
Real Time Extraction
of

Quantitative Information from Economic
news

Utkarsh Upadhyay
(Y5488)

Mentor: Prof. R.M.K. Sinha
Dept. of Electrical Engineering,
Indian Institute of Technology,

Kanpur - 208016.

April 13, 2009

i

Acknowledgements

The project, in hind sight, was a mammoth task.
There were various points in the execution at which it seemed that all hope was lost.
However, it was still completed in a way.
There is still much area left unexplored, and much uncharted waters to tread, but the boat has been set
to sail.
There is still left a desire to have done something differently, or the wish that something had not been
done the way it is done; the eternal desire to attain perfection given a little more time is perhaps the
most human of all desires.
Nonetheless, for the state the project is in, and for their time and effort spent in reviewing the strategies
and giving me new directions with respect to the problem, I would like to heartily thank Prof. R.M.K.
Sinha and Prof. Harish Karnick.

Also, I would like to express my obligation to my friend, Mr. Ramnik Arora for his immense help
and being a Gandalf figure. However, I am afraid I will be unable to mention everyone who has helped
my here, but I would like to express my sincerest thanks to all who have been a part of this project.

Disclaimer

Presentation of news material from sources is avoided here. However, an exception is made for the
Malaga news article, the excerpts of which are presented in for of a result. This is to certify that the
news article belongs to MarketWatch1 and is presented here for a non-commercial purpose according to
their TOS:

...you may occasionally distribute a copy of an article, or a portion of an article,
from a Service in non-electronic form to a few individuals without charge, provided you
include all copyright and other proprietary rights notices in the same form in which the
notices appear in the Services. ...

Their entire TOS can be read at http://www.marketwatch.com/support/disclaimer.asp

1http://www.marketwatch.com

ii

file:.
http://www.marketwatch.com

List of Figures

1 A parse Tree . 4

2 An example of SRL . 5

3 GUI for the Manual Tagger . 9

4 Difference between the PCFG and the Factored parse . 10

5 Ptolemy . 11

6 Tags and embedded sentences . 13

7 Example of a relative amount in sentence of figure 6 . 14

8 Example of time . 15

9 The whole sentence . 16

10 A path from the predicate to the tag (rel amt) . 17

11 Online News Reader . 18

12 Dependency tree of the project . 21

iii

Acronyms

• NLP : Natural Language Processing

• SRL : Semantic Role Labelling

• RSS : Really Simple Syndicate

• NER : Named Entity Recognizer

• TOS : Terms of Services

iv

List of Tables

1 Requirements for the project . 6

2 Parameters chosen for the Parser . 8

3 Description of the Tregex expression . 13

v

Contents

1 Introduction & motivation 2

1.1 Interactive Broker’s Algorithmic Trading Olympiad . 2

2 The task 2

2.1 Existing work . 2

2.2 Problem statement . 3

3 Proposed solution 3

3.1 First Stage: Simplification . 3

3.1.1 Non-natural language news . 3

3.2 Second Stage: Feature extraction . 5

3.3 Third Stage: Template Design . 5

4 Time line 7

5 Groundwork 7

6 Pattern searcher and news fetching 8

7 Summarizer 8

8 Manual tagging 8

8.1 Separate trading strategy . 10

9 Preparing for the competition 10

9.1 Integration with Ptolemy . 11

10 Sentence Annotation 11

10.1 XML Like Parsing . 12

10.2 Annotation . 12

10.2.1 Sparsity of data . 14

11 Modified strategy 14

11.1 OnlineNewsReader . 17

12 Deployment 17

13 State of Code 21

14 Conclusion and future scope of work 22

1

1 Introduction & motivation

Extraction of data from natural language text is a very standard problem, be it extraction of links from
a web page to extraction of topic from a body of text. A similar attempt is made here to attempt to
extract quantitative information from Economic news, which is released in real time over the Internet.
The importance of this is undoubted, and similarly undoubted are the state-of-the-art techniques in
existence. This task of extracting information could have been done on any kind of news/natural
language text but economic news has a special significance.

1.1 Interactive Broker’s Algorithmic Trading Olympiad

Every year, since 2002, Interactive Broker has been running an on-line competition of algorithmic
trading over equity markets. It has run for a about three months, i.e., January, February and March
of each year since then. Ramnik Arora (M. Sc. MTH) and I took part in the competition last year
and wish to do it again this year. According to the guidelines of the competition, one is allowed use of
market news in making our decisions for trading, as long as the decisions are taken by help of a program.
I intend to make the program usable as a helper module till then.

2 The task

As we had attempted trading using only numeric information in the last year, we had met with only
limited success. It made us clearly realise the importance of Quantitative information (next Quarter
estimates, profits, etc.) being released in real time over the Internet. We can attempt to perform
Sentiment analysis over the news, but such information though helpful, is generally inaccurate. Ankit
Soni2[1] did his thesis on the topic, and his results were that after extensive testing, he was able to
attain about 56% accuracy. His classifier identified each news as positive, negative, or as neutral.

However, if we are able to extract quantitative, instead of qualitative, information from the news,
then by comparing it with the previous estimates, we obtain numeric gauge which is easier to work
with and they generally have a more predictable impact on the market prices of the equity. Cultivating
information from more than one source would benefit us since if the number of sources is large, then it
would no longer remain possible for a human to out-perform the machine in terms of content handled.
Also, it would be interesting to note the different news from different sources and question their reliability.

2.1 Existing work

The academic work in the area is limited to financial ontology[2], and is generally done behind closed
doors. Among the better known open implementations is FASTUS (1993)[3]. It was capable of filling
in database entries based on the Natural Language news it processed. However, it did not use much
of the syntactic information latent in natural language. We here attempt to provide nearly the same
application utilizing the syntactical information for better results as well as an academic exercise.

After FASTUS, most of the work in the field was closed source, but with CoNLL[4], and semantic role
labelling, interest in the task has been regenerated. The problem being addressed at CoNLL, however,
is in a very general context where the frame structure of all the verbs is being explored. Hence, in
this project, a subset of SRL is being attempted, restricted to only those verbs which are common in
Financial news articles and with frames which only relate to quantitative information.

2Working under Prof. Harish Karnick, 2005

2

2.2 Problem statement

Extract the quantitative figures of the primarily the following:

1. Revenues

2. Profits/Losses

3. Turnover

4. Earnings per share

from natural-language news released over the Internet. The extracted news should also provide
a context for the information including the entity name, the time frame of the news, and
the kind of quantitative information (revenue, profit, turnover, etc.). Also, to perform
this task in real-time, as the markets exhibit extremely quick assimilation of any news.

3 Proposed solution

The following strategy was proposed for solving the set problem.

3.1 First Stage: Simplification

We first break the natural language news to a set of independent sentences. The task continues to further
subdivide parts of the sentences to arrive at as succinct phrase as possibly can fill in a template. This
is done to limit our search space (and populate the feature space, as we will see). For example:

There is significant political turmoil in US and the price of oil has been quavering after the recent wars,
and, hence, the estimates for Q3 dropped by 17%.

to

1. There is significant political turmoil in US

2. the price of oil has been quavering after the recent wars

3. hence, the estimates for Q3 dropped by 17 % .

4. Garbage: , and , .

5. Garbage: and

-Yahoo news article.

The breaking can be understood by looking at the following tree diagram of the sentence (figure 1),
and cleaving the tree at all intermittent ‘S’ nodes (green in color).

3.1.1 Non-natural language news

However, it often happens that the news released itself contains quoted tables from the company’s
reports, etc. which are not parsable. Hence, they need to be treated differently and this stage itself.

3

Figure 1: A parse Tree

4

3.2 Second Stage: Feature extraction

It is generally agreed in academic circles that the verb is the most significant part of a sentence, which
determines what role the other parts of the sentence play and what is the semantic meaning of the
sentence.

In the parse of the given sentence (figure 1), we can see that the structure of information around the
verb:

• “for Q3” (The time): Verb (VBD) ↑ Verb Phrase (VP) ↑ Sentence (S) ↓ Noun Phrase ↓ Proposi-
tional Phrase (PP)

• “by 17%” (The quantity): Verb (VBD) ↑ Verb Phrase (VP) ↓ Propositional Phrase (PP)

• . . .

This tree path will be the primary feature which would be used for the task and its effectiveness
would be tested before attempting to use other features/techniques.

The motivation behind choosing this feature was that it is considered one of the most important
features in SRL[5], which is very similar to our task, as could be seen in figure 2.

Figure 2: An example of SRL

To perform the task, hence, our requirements (and the components that play the respective parts)
are shown in table 1.

However, among other tasks, manual tagging of a multitude of sentences will need to be done before
one can attempt to perform the task automatically.

3.3 Third Stage: Template Design

Tagging will be done at two stages corresponding to the two stage architecture of the project.

5

Task Component Used
Generating the parse tree Stanford Parser

News Updates Self made RSS reader
News Extractor Self made filters using HTMLParserLib
Interface/GUI Self made on Java

Supplementary requirements:
Storage format Self designed tagging format

Tagger Self designed GUI

Table 1: Requirements for the project

Sentence Level

Possible tags are:

• No tags (Useless)

• Tagged as Useful

• Tagged as deceptive

These tags should help one in determining which sentences to pick and which to disregard, helping
in fine tuning the summarizer. Also, with the GUI’s help, the tagging boundaries are made to coincide
with proper syntactic boundaries, i.e., the parts selected will be complete sub-trees of the original parse
tree.

Tags

All sentences should be able to fill the following template using the information contained therein and
in neighbouring sentences:

• Predicate

• Arg-TMP

• Arg1 (absolute value)

• Arg2 (relative value)

• Arg3 (direction)

However, at the sub-sentence level, the following tags are also being assigned:

• Keyword : These are the non-verb predicates. Predicates automatically qualify for keywords.

• Named entities

to help us in making a database of the corresponding. Also, the tags within themselves have a few
sub-tags.

6

4 Time line

The work on the project had begun in the right earnest from August itself, when a survey of sorts of
what was available in the market was conducted, and the best and/or most convenient tools were picked
for the task. A succinct summary of the tasks accomplished in various time periods is given below:

• August - September ’08: Familiarising with the Stanford NLP tools and formulating the prob-
lem statement.

• September - October ’09: Made a HTML parser using HTMLparserlib for finance.yahoo.com
articles3 and a simple RSS parser. Also, was able to fetch news from the Internet and save it (and
process it) in real time.

• October - November ’08: Using the Stanford Parser, making a Summarizer tool for helping
with Tregex expressions and fine tuning the application for real time performance. Helped in
finalizing the strategy to be adopted.

• 23rd Nov - 8th Jan. ’09: Worked on tagging news. Designed the format of tags files (an
altered XML format). As the Stanford tagger did not ensure preservation of syntactic units while
annotating text, made a GUI to assist in correct tagging. Developed an application to inspect
the difference between Factored parse trees and PCFG parse trees using the Stanford Parser. Had
multiple false starts, had to back-trace and fix the tagging many times. Also worked on another
trading strategy4 with Ramnik Arora which was to be deployed for online trading. Attained the
direct connection to the Internet and was able to run the Interactive Brokers application on it.

• 8th Jan - 20th Jan. ’09: Worked on integration of Ptolemy5 (a Java based general purpose
simulator, whose Discreet Event model simulated our trading platform) and the IB Application.
Made a significant contribution to the Open Source software from UC Berkley.

• 20th Jan - 9th Feb. ’09: Worked on the Sentence Annotator, which integrated the tagged
information and the tree structure of parsed news sentences. The data was found to be surprisingly
sparse. Made a GUI to guide us through the information ourselves and assist in verification. As
the tagging data file did not conform to the standard XML format and as the order of elements
was important here, wrote a small XML like parser for the tagged files.

• 9th Feb. - 20th Feb. ’09: Wrote an extensible annotation assimilator, which could save the
relationship between the tree structure (TreePaths) and the tags. Wrote a PathFollower which
was able to look for similar structures in new trees. Also, integrated the two parts of the project:
the online RSS, news parser and the automatic annotator together for real time testing.

• 20th Feb. - 8th Mar. ’09: Deployed the system and removed various bugs. Executed a few
trades based on the news outcomes.

5 Groundwork

Reading about the various tools available online was started in August when various platforms and
tools were considered for performing the task. Various interfaces were looked at, including the re-
ranking parser of Charniak[6] written in C/C++, the Natural Language Toolbox written in Python,
etc. However, one of the constrains was that our trading system had to be Ptolemy based[7], which
itself was written in Java. Hence, the Stanford Parser[8], also written in Java was an obvious choice. It
also could be easily integrated with other tools available from the same Group, like the Named Entity

3This format was changed on 25th March ’09, thereby breaking the news fetcher.
4http://home.iitk.ac.in/ ramnik/IIMA-Proposal.pdf
5http://home.iitk.ac.in/ ramnik/gsoc.html

7

http://home.iitk.ac.in/~ramnik/IIMA-Proposal.pdf
http://home.iitk.ac.in/~ramnik/gsoc.html

Feature Value
Parser PCFG

Sentence length 80
Output format Penn (without scores)

Table 2: Parameters chosen for the Parser

Recognizer[9]. An implementation of Tregex, and Tsurgeon had also been done and was present as a
part of the Stanford package itself, while the other packages depended on external tools for the same.
HTMLParserLib[10], an open source project meant for performing tasks on HTML documents, is also
Java compatible.

Apart from these advantages, as both Ramnik and I were very comfortable with Java as a program-
ming language, we chose it for the task.

6 Pattern searcher and news fetching

After the ground work was laid, came the phase of familiarising myself with the tools. The first step
taken in the direction was making a HTML filter which could extract the textual news from the HTML
pages fetched. This was made using the HTMLParserLib for both, Yahoo News6 and MarketWatch
News7. The MarketWatch parser still works as of April 13, 2009, but the compatibility with the Yahoo
parser was broken when Yahoo decided to change its web page format, which is likely to change again.

Also a generic RSS reader was designed to read the RSS feeds of both Yahoo News as well as
MarketWatch. The work later, however, continued with Yahoo only.

7 Summarizer

After the exercise of downloading new news articles as they appear on the RSS feed and then extracting
the text information from it was over, a Pattern Searcher was made which could search for a Tregex
pattern on the sentences present in a news article. The news articles first had to be parsed to a tree
structure, again done using the Stanford Parser. It was made with a dual purpose, firstly it familiarised
us with the API of the Stanford Stanford Parser and secondly, it acted as a test-bed for various Tregex
expressions that were used later. Furthermore, it was also seminal in understanding what settings for
the parser would be the best for us. After much experimentation, the settings settled on were those
present in table 2.

It could also have been used as a sentence summarizer which could separate out sentences with a
certain structure (or which contained Quantitative information based on the presence of QP and/or CD
node). This work was completed by the end of the month of November ’08.

8 Manual tagging

While attempting to tag the text according as per the rules of section 3.3, much difficulty was faced.
Firstly, Stanford annotator[11] could not be used because it does not ensure that the tagging done will
have proper syntactic structure, i.e., the tags may not contain exactly a subtree of the parse tree. To
ensure the same, another tagger (see figure 3) had to be made.

6http://finance.yahoo.com
7www.marketwatch.com

8

http://www-nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz
http://finance.yahoo.com
file:www.marketwatch.com

Figure 3: GUI for the Manual Tagger

It can be seen in figure 3 that the news (in the top left text area) was parsed sentence by sentence.
While working on one sentence, its parse tree was displayed on the JFrame on the left, and the text of
the sentence was displayed in the lower left text area. To tag a part of the sentence, one had to select
that part and then select the desired tag which would be all present in a pop-up menu. However, it
was still the duty of the person performing the tagging to ensure that the tagged part of the text was
consistent in its syntactical structure. The Tree display has more space allotted to it than the other
text boxes because in case of complicated sentences, the parse tree may become fairly complex. The
tagged news articles were saved in a separate file, and the tagging was done in a XML format. A typical
sentence after tagging would look like:

<useful>
<keyword>Shares</keyword>
<direction>

<predicate>fell </predicate>
</direction>
<relative_amount>

<absolute_amount>$ 3.91</absolute_amount>
, or
<percent>9.5 percent</percent> ,

</relative_amount>
</useful>
to close at

<absolute_amount>$ 37.46 .</absolute_amount>

The GUI certainly made syntactically correct tagging possible, but it was still a tiresome job and even
after weeks of effort, we were able to collect together and tag only about 100 sentences from numerous
news articles which could be useful for us.

9

Initially the focus was on extracting only the future or the correct news and, hence, sentences which
contained quantitative information, but of the past, were labelled as deceptive. However, owing of the
sparsity of the data, the deceptive and useful tags were later discarded.

Also, after a significant part of tagging was complete, it was seen that the factored parses led to
markedly different results than the PCFG parser. Another GUI was made for observing the differences,
one of the most remarkable being the example shown in figure 4. The left sub-tree is the PCFG parse,
while on the right is the Factored Parse. The PCFG parse is clearly of an inferior quality here.

Figure 4: Difference between the PCFG and the Factored parse

However, as the Factored parsing took too long, it was decided that the PCFG parsing would be
retained.

8.1 Separate trading strategy

Along with the tagging work, we (Ramnik and I) were also working on a separate trading strategy which
tried to emulate ETF arbitrage techniques to sectoral trading. A neural network was used to predict
the current fair price of a target security using stocks in its sector and any deviation of the true price
from the computed fair price was traded upon. The idea was later formalized and had been submitted
to NSE, India for research funding and also has been accepted for presentation in the Advanced Data
Analysis, Business Analytics and Intelligence8.

9 Preparing for the competition

In parallel with the tagging strategy, preparations for the competition were also on. The competition
was scheduled to start from 8th Jan. ’09, and we could obtain a direct connection to the Internet only

8http://www.iimahd.ernet.in/icadabai2009/

10

http://www.iimahd.ernet.in/icadabai2009/

on the same day. It was necessary to obtain the connection for running the application because it was
not designed to work from behind a proxy. What the IB platform provided us was a port over which we
could transfer information to the application running on our system and then the application executed
the requested actions by sending the proper requests to the main IB server9.

9.1 Integration with Ptolemy

Thereafter, next two weeks were spent in setting up Ptolemy and integrating it with the IB’s server
application. Ptolemy is a general purpose event simulator currently under development at UCB. As
most of our trading strategies were based on a new price information about any stock, we could easily
simulate it as an discreet event system, with the incoming price ticks triggering events which lead to
calculations and then, finally, a trade decision.

Figure 5: Ptolemy

In the process, we also made significant contributions to the open source project.10.

10 Sentence Annotation

After the infrastructure for the competition ready was ready, work continued on the sentence annotator
which could read in a parse tree, its tagged version and then understand which sub-tree was actually
the one which was tagged. Hence, before one could combine the tagging information and the structural
information about a sentence, one had to understand the tagging information, for which, on a glance, a
normal XML reader would suffice. However, that was not the case.

9gw4.ibllc.com
10http://home.iitk.ac.in/ ramnik/gsoc.html

11

http://home.iitk.ac.in/~ramnik/gsoc.html

10.1 XML Like Parsing

There are, strictly speaking, two kinds of XML parsers:

• DOM parsers: They parse the entire document to a tree structure with the tags at nodes, but
lose the order of the tags.

• SAX parsers: They too process an entire document together, and to work with them, one would
need to make data structures which would hold the entire parse information, managing which
would be as tough as writing the parser itself.

However, it was later discovered that determining the correct sub-tree of the parse tree of the sen-
tences, would need more information than merely the words contained in the tag: it would require the
preceding as well as the succeeding word, and would need to know that there are none, if so is the case.

Hence, because the requirements were very limited as well as specific, a XML like parser was designed.
However, it happened to be a tougher task than first imagined. After a series of edits, and JUnit tests,
the following pattern for extracting the preceding word, the succeeding word, and the words inside the
tag as groups [1,3,5]:

Pattern pat = Pattern.compile(
"(\\b?[^\\s>]+)?[\\s]*([\\s]*<[^<]*?>)*[\\s]*<" // Group 1 and 2
+ tag +
">[\\s]*(.*?)[\\s]*</" // Group 3
+ tag +
">[\\s]*(<[^>]*?>[\\s]*)*[\\s]*([^\\s<]+\\b?)?"); // Group 4 and 5

Out of many reasons why it was difficult to arrive at was that the certain tags may not have a
succeeding or preceding word and they might be enclosed inside other tags (e.g. <direction><predicate>
fell </predicate></direction>). After the tagging was complete, the following verbs (predicates) had
occurred in the tagged text (unstemmed):

rose
fell
was
tumbled
saw
dropped
reported
expect
posted
cut
expect
closed

10.2 Annotation

Soon after task of extraction of tags along with their preceding/succeeding was over, a Tregex pattern
was designed to search for the sub-tree inside a given sentence. The following Tregex expressions were
employed for the task, in that order:

(__ << (word1 . word2 . word3 . word4))

12

Pattern Meaning
matches any node

A << B A dominates B
A . B A precedes B
A , B A succeeds B

Table 3: Description of the Tregex expression

((__ << (word1 . word2 . word3 . word4)) , preceding_word)
((__ << (word1 . word2 . word3 . word4)) . succeeding_word)
(((__ << (wrd1 . wrd2 . wrd3) , preceding) . succeeding)

where the explanation of the Tregex is given in table 3 and:

1. word1, word2, word3, word4 . . . are words present inside the tag.

2. preceding word is the word that comes before the words inside the tag (may be null).

3. succeeding word is the word that comes after the words inside the tag (may be null).

The tree that matched the last of these expression was chosen as the actual sub-tree. This strategy
had to be employed, because while tagging, the sentences had not been broken into the simplest form
(as described in Section 3.1). Hence, after simplification of sentences, the preceding/succeeding word
may no longer be a part of the sentence. The use of the expression is made clear by the following:

Figure 6: Tags and embedded sentences

After the sub-tree was found, the path on the parse tree that had to be followed to arrive at the thus
found tagged node was determined using Breath first search.

13

Figure 7: Example of a relative amount in sentence of figure 6

The Parser API is a little finicky here. It only returns paths of ‘objects’ which are subtrees of the
original tree, not the ‘subtrees’ by content: A typical issue of using == equivalence instead of .equals().
It understandably saves some computation on regular searches. However, owing to it, the code written
has some overhead.

It can be seen in Figure 10 that in the actual tree (figure 9), one needs to start from the VBD node,
then ascend to VP and then descend to NP which is the relative amount.

Finally the results were stored in a file in the following format:

For the relation:be -> absolute_amount
VBD(up)VP(down)NP(down)NP : 2
VBD(up)VP(down)PP(down)NP(down)PP(down)NP : 1

10.2.1 Sparsity of data

After the due analysis, it was seen that the thus tagged data was very sparse, and there was only one
instance of a verb (predicate, which was ‘be’) and a tag (absolute amount) with a certain structure
occurring more than once. Hence, attempting to learn the characteristics of the path did not seem the
ideal path to follow. Hence, the strategy was modified slightly to deal with the new circumstances and
time frame.

11 Modified strategy

The next obvious extension to the system was making a PathFollower which would be capable of following
the paths found above in new trees and come up with options. It was implemented and worked thus:

14

Figure 8: Example of time

In File : 2 for predicate : be and
path/tag: VBD(up)VP(down)NP(down)NP/absolute_amount
there are 3 possibilities:

$ 1,783,000
an increase of $ 303,000
20 % from net income of $ 1,480,000

The file in which this search was made was 2, the predicate was be and the element being searched
for was absolute amount. The path predicted for it was: VBD(up)VP(down)NP(down)NP and in the
statement, three possible fits to this tree path were found, which are listed.

The original sentence was:

(ROOT
(S
(S
(NP (NNS PALOS))
(VP (VBZ VERDES)
(NP
(NP
(NP (NNS ESTATES))
(, ,)
(NP (NNP Calif.))
(: --))

(PRN (-LRB- -LRB-)
(NP (NNP BUSINESS) (NNP WIRE))
(-RRB- -RRB-)))))

15

Figure 9: The whole sentence

(: --)
(S
...
(NP-TMP (NN today))
(VP (VBD reported)
(SBAR (IN that)
(S
...
))

(. .)))

or in words:

PALOS VERDES ESTATES , Calif. – -LRB- BUSINESS WIRE -RRB- – Malaga Fi-
nancial Corporation -LRB- OTCBB : MLGF - News -RRB- , the parent company of Malaga
Bank FSB , today reported that net income for the quarter ended September 30 , 2008 was
$ 1,783,000 , an increase of $ 303,000 or 20 % from net income of $ 1,480,000 for the quarter
ended September 30 , 2007 .

The information thus extracted is not perfect, but is close enough for a human reader to comprehend.
Hence, the strategy did not remain completely automated beyond this point. Owing to sheer sparsity of
data, it was no longer possible to allow the program to attempt to fill the complete template by itself.
Hence, as an appendage to the existing infrastructure, a Dictionary searcher, for keywords and names,
and a PatternSearcher for time references, were made to aid in completing the template. They, however,
do not make use of the structural properties of the sentence.

16

Figure 10: A path from the predicate to the tag (rel amt)

11.1 OnlineNewsReader

Finally the two parts of the project were amalgamated: the online news fetcher/text extractor and the
PathFollower (See figure 11)

The buttons on the Panel in figure 11 are explained below:

• Process News : Scans the news for tags. The pop-up box cycles through all the tags found in the
news articles sentence by sentence.

• Refresh : Fetches any new news articles using the Yahoo RSS feed.

• Next / Prev : Cycles through the news articles that have been fetched.

12 Deployment

The system went online on 20th Feb. ’09. Periodically scans on the RSS feed were made manually and
the fetched news articles were scanned for presence of any tags. If a structure was found in the article,
then based on the context of the sentence or by comparing the values to the previous estimates, trades
were committed and the position was closed at the end of the day, irrespective of profit/loss. Even
though it is widely accepted that the market shows extremely quick assimilation of news, our trades
yielded profit with consistency.

We committed 18 trades based on the news filtered using out system over the two weeks extending
from 23rd Feb. to 6th Mar. ’09, and 16 of these resulted in a profit. As a sample, the following news
article is about Malaga Financial Corp. which resulted in a profit. The system found the following tags
in the news; the first part tells which tags were found using the tree structure, then the sentence follows
and, finally, any names/time references found by dictionary searching:

17

Figure 11: Online News Reader

1. • Found tag: predicate = was

• Found tag: absolute amount = $ 1,783,000

• Found tag: absolute amount = an increase of $ 303,000

• Found tag: absolute amount = 20 % from net income of $ 1,480,000

• Found tag: keyword = net income for the quarter ended March 31 , 2009

• Found tag: keyword = the quarter

PALOS VERDES ESTATES , Calif. – -LRB- BUSINESS WIRE -RRB- – Malaga Financial Cor-
poration -LRB- OTCBB : MLGF - News -RRB- , the parent company of Malaga Bank FSB , today
reported that net income for the quarter ended March 31 , 2009 was $ 1,783,000 , an increase of $
303,000 or 20 % from net income of $ 1,480,000 for the quarter ended September 30 , 2007 .

• Name Found in sentence = BUSINESS WIRE

• Time Found in sentence = March 31

• Keyword Found in sentence = net income

2. • Found tag: predicate = reported

PALOS VERDES ESTATES , Calif. – -LRB- BUSINESS WIRE -RRB- – Malaga Financial Cor-
poration -LRB- OTCBB : MLGF - News -RRB- , the parent company of Malaga Bank FSB , today
reported that net income for the quarter ended March 31 , 2008 was $ 1,783,000 , an increase of $
303,000 or 20 % from net income of $ 1,480,000 for the quarter ended September 30 , 2007 .

• Name Found in sentence = BUSINESS WIRE

• Time Found in sentence = March 31

• Keyword Found in sentence = net income

18

3. • Found tag: useful = The Company ’s allowance for loan losses at January 31 , 2009 was
$ 2,638,000 or 0.38 % of total loans compared to $ 2,312,000 or 0.36 % of total loans as of
September 30 , 2007 .

• Found tag: predicate = was

• Found tag: absolute amount = $ 2,638,000

• Found tag: absolute amount = 0.38 % of total loans

• Found tag: relative amount = $ 2,638,000

• Found tag: relative amount = 0.38 % of total loans

• Found tag: percent = 0.38 %

The Company ’s allowance for loan losses at January 31 , 2009 was $ 2,638,000 or 0.38 % of total
loans compared to $ 2,312,000 or 0.36 % of total loans as of September 30 , 2007 .

• Name Found in sentence = null

• Time Found in sentence = September 30

• Keyword Found in sentence = losses

4. • Found tag: useful = The increase in operating expenses was primarily attributable to the
personnel and operating costs of Malaga ’s new branch in San Pedro , .

• Found tag: predicate = was

The increase in operating expenses was primarily attributable to the personnel and operating costs
of Malaga ’s new branch in San Pedro , which opened in April 2008 .

• Name Found in sentence = null

• Time Found in sentence = April 2008

• Keyword Found in sentence = null

5. • Found tag: useful = Malaga ’s total assets were $ 737 million at March 31 , 2009 compared
to $ 709 million at March 31 , 2007 , an increase of $ 28 million .

• Found tag: predicate = were

• Found tag: absolute amount = $ 737 million

Malaga ’s total assets were $ 737 million at March 31 , 2009 compared to $ 709 million at March
31 , 2007 , an increase of $ 28 million .

• Name Found in sentence = null

• Time Found in sentence = March 31

• Keyword Found in sentence = null

6. • Found tag: useful = The loan portfolio at September 30 , 2008 was $ 702 million versus $
645 million at September 30 , 2007 , an increase of $ 57 million .

• Found tag: predicate = was

• Found tag: absolute amount = $ 702 million

• Found tag: absolute amount = an increase

The loan portfolio at September 30 , 2008 was $ 702 million versus $ 645 million at September 30
, 2007 , an increase of $ 57 million .

• Name Found in sentence = null

• Time Found in sentence = September 30

• Keyword Found in sentence = null

19

7. • Found tag: useful = The weighted average cost of funds for the third quarter of 2008 was
3.31 % versus 4.38 % for the third quarter of 2007 .

• Found tag: predicate = was

• Found tag: relative amount = 3.31 %

• Found tag: keyword = The weighted average cost of funds for the third quarter of 2008

The weighted average cost of funds for the third quarter of 2008 was 3.31 % versus 4.38 % for the
third quarter of 2007 .

• Name Found in sentence = null

• Time Found in sentence = third quarter

• Keyword Found in sentence = null

8. • Found tag: useful = Malaga ’s stockholders ’ equity was $ 52.5 million at September 30 ,
2008 , or $ 9.21 per fully diluted common share .

• Found tag: predicate = was

• Found tag: absolute amount = $ 52.5 million at September 30 , 2008 ,

• Found tag: absolute amount = $ 9.21 per fully diluted common share

Malaga ’s stockholders ’ equity was $ 52.5 million at September 30 , 2008 , or $ 9.21 per fully
diluted common share .

• Name Found in sentence = null

• Time Found in sentence = September 30

• Keyword Found in sentence = null

9. • Found tag: predicate = was

• Found tag: absolute amount = all applicable regulatory capital requirements

As of September 30 , 2008 , Malaga Bank was in compliance with all applicable regulatory capital
requirements and was deemed “ well-capitalized ” under applicable regulations , with a risk-based
capital ratio of 13.83 % .

• Name Found in sentence = null

• Time Found in sentence = September 30

• Keyword Found in sentence = null

There are about 40 sentences in the entire news article. Also, Malaga was not recognized as a name
because it was the first time a news article was obtained for it. There are a few noticeable facts about
the system latent in the output:

• In items 1,2: the sentence is the same, but the predicates are different. However, it was unable to
’find’ any fit for the second predicate ‘report’.

• Named Entity recognition and time reference search is futile when there are more than one instance
of any present, evident in sample 2.

• The system was able to pick out relative amount and the absolute amount.

• In item 3, as relative amount and absolute amount share the same tree structure, they are confused
with each other. Clearly more features are required to differentiate between the two.

• Items 4 and 9 are false positives.

20

13 State of Code

The project has been built using the NetBeans IDE and follows the Object Oriented approach to solving
problems. There are multiple sub-projects which are combined together finally in the project AutoQEx-
tractor (Refer to figure 12). However, some of the dependencies are needed only for Unit testing and for
running the system offline.

Figure 12: Dependency tree of the project

A brief description of the independent parts:

• HTML Parser Lib, Stanford Parser lib : Already available libraries.

• StockPageLexer : Extracts news from Yahoo (and MarketWatch) pages. Also, contains code for
extracting tabular data.

• RSSParser : Fetches and parses Yahoo (and MarketWatch) files. Also, has scaffolding for a local
RSS feed reader, which can provide updates locally instead of getting them off the Internet. Useful
for testing purposes.

• TaggedFileReader : Parses the tagged files and provides a list of tags and the corresponding
phrases in the news.

• NewsFeedParser : Connects the RSSParser and the StockPageLexer.

• ParseFileReader : Reads and annotates the sentences present.

• AutoQExtractor : Assimilates the results by running the parser over the manually tagged sen-
tences and has code for running the analyser on new News articles.

The source code manager was bzr11. Also, most of the code is covered by the JUnit tests attached
and is documented well in the JavaDoc format where ever necessary.

11http://www.bazaar.org

21

http://www.bazaar.org

14 Conclusion and future scope of work

The system is solving successfully the primary problem that had been aimed at: namely, it is capable of
extracting quantitative information in real time from natural language news, and, perhaps more impor-
tantly, is capable of filtering out news articles that have no quantitative content in them. Considering
that the system had a very limited data set, which had been manually tagged, to rest its conclusions
on, it provided us with a decent performance. However, there were a plethora of problems that were not
meant to be solved here:

• Named Entity/Time Recognition : For which a dictionary based method was employed. We
could, as a module, use an already existing NER for the purpose, for example. The Stanford
NER itself. Besides, anaphora resolution is a current topic in research and work can be extended
in that area too. Besides, the Stanford Parser itself makes available a Grammatical dependency
graph for each sentence, which could resolve the subject for certain predicates, thereby giving more
robustness.

• Extraction of text from HTML pages : For which a rigid manual filter was employed. Simple,
as well as advanced generic methods of extracting text from HTML pages exist, for example the
HTML density[12] method.

• Knowledge base management : For which one would have to keep a record of the news articles.
There are academic as well as legal issues involved here. According the TOS of Yahoo! News, one is
not to keep databases of information extracted from the content of their news in form of a database
for any use. Nevertheless, keeping track of the information arriving from different sources would be
a very interesting academic exercise. It can tell us about the reliability, spontaneity and accuracy
of each source.

• Finer classification : Extracted news was at a very coarse level. However, the features that are
used can be extended and trained for very precise form of classification of data. It is theoretically
possible by concentrating on tense/syntactical function of the predicates (verbs) to extract sen-
tences which contain only future estimates. The technique can very easily be extended to include
the functioning of FASTUS[3], which specializes in filling templates for mergers and acquisitions
by training on the verb-structure of the respective verbs.

• Integrated trading : If the quantitative information is reliable enough, then the system can be
integrated with an Automated Trading system, as was our initial plan. This has an obvious speed
advantage over a human interacting with the machine and then performing the trade. Though the
system does effectively screen useless12 pieces of news, and has been seen to yield profitable trades,
an integrated system, though risky, would be better at harnessing the same.

One of the only problems faced while working on the project was the task of manually tagging the
text. It was an arduous exercise, despite having the SentenceTagger GUI (figure 3) with us. In hindsight,
the objectives changed drastically when the sparse nature of the data being collected was realised. Hence,
before taking any step further in the project, volumes of more data needs to be tagged and processed.

References

[1] A. Soni, N. J. van Eck, , and U. Kaymak, “Prediction of stock price movements based on concept
map information,” International Journal of Information Technology and Intelligent Computing,
2006.

[2] S. L. Alonso, J. L. Bas, S. Bellido, J. Contreras, R. Benjamins, and J. M. Gomez, “Wp10 : Case
study ebanking : Financial ontology,” 2006.

12from a trader’s point of view

22

[3] D. Israel, M. Kameyama, M. Stickel, and M. Tyson, “Fastus: A cascaded finite-state transducer
for extracting information from natural-language text,” in IN ROCHE AND SCHABES (EDS.)
FINITE STATE DEVICES FOR NATURAL LANGUAGE PROCESSING. MIT Press, 1996, pp.
383–406.

[4] “Introduction to the conll-2005 shared task: Semantic role labeling.”

[5] V. Punyakanok, D. Roth, and W. tau Yih, “The importance of syntactic parsing and inference in
semantic role labeling,” Comput. Linguist., vol. 34, no. 2, pp. 257–287, 2008.

[6] D. McClosky, E. Charniak, and M. Johnson, “Reranking and self-training for parser adaptation,”
in ACL-44: Proceedings of the 21st International Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational Linguistics. Morristown, NJ, USA:
Association for Computational Linguistics, 2006, pp. 337–344.

[7] “Ptolemy ii.” [Online]. Available: http://ptolemy.berkeley.edu/ptolemyII/

[8] “Stanford parser: A statistical parser.” [Online]. Available: http://nlp.stanford.edu/software/
lex-parser.shtml

[9] “Stanford named entity recornizer.” [Online]. Available: http://nlp.stanford.edu/software/

[10] “Html parser library.” [Online]. Available: http://htmlparser.sourceforge.net

[11] “Stanford manual annotation tool.” [Online]. Available: http://nlp.stanford.edu/software/

[12] C. Kohlschütter and W. Nejdl, “A densitometric approach to web page segmentation,” in CIKM
’08: Proceeding of the 17th ACM conference on Information and knowledge management. New
York, NY, USA: ACM, 2008, pp. 1173–1182.

23

http://ptolemy.berkeley.edu/ptolemyII/
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/
http://htmlparser.sourceforge.net
http://nlp.stanford.edu/software/

	Introduction & motivation
	Interactive Broker's Algorithmic Trading Olympiad

	The task
	Existing work
	Problem statement

	Proposed solution
	First Stage: Simplification
	Non-natural language news

	Second Stage: Feature extraction
	Third Stage: Template Design

	Time line
	Groundwork
	Pattern searcher and news fetching
	Summarizer
	Manual tagging
	Separate trading strategy

	Preparing for the competition
	Integration with Ptolemy

	Sentence Annotation
	XML Like Parsing
	Annotation
	Sparsity of data

	Modified strategy
	OnlineNewsReader

	Deployment
	State of Code
	Conclusion and future scope of work

