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Abstract Model-based synthesis of distributed controllers for multi-robot systems
is commonly approached in either a top-down or bottom-up fashion. In this paper,
we investigate the experimental challenges of both approaches, with a special em-
phasis on resource-constrained miniature robots. We make our comparison through
a case study in which a group of 2-cm-sized mobile robots screen the environment
for undesirable features, and destroy or neutralize them. First, we solve this problem
using a top-down approach that relies on a graph-based representation of the sys-
tem, allowing for direct optimization using numerical techniques (e.g., linear and
non-linear convex optimization) under very unrealistic assumptions (e.g., infinite
number of robots, perfect localization, global communication, etc.). We show how
one can relax these assumptions in the context of resource-constrained robots, and
the resulting impact on system performance. Second, we solve the same problem us-
ing a bottom-up approach, i.e., we build up computationally efficient and accurate
models at multiple abstraction levels, and use them to optimize the robots’ controller
using evolutionary algorithms. Finally, we outline the differences between the top-
down and bottom-up approaches, and experimentally compare their performance.

1 Introduction

Model-based synthesis of distributed controllers for multi-robot systems is com-
monly approached in either a bottom-up or top-down fashion. In this paper, we
propose an experimental comparison of both approaches based on a case study in
which a group of severely resource-constrained robots screen the environment for
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(a) (b)

Fig. 1 (a) Close-up picture of an Alice 2002 robot with its extension board. (b) Picture of an
on-going top-down experiment with six Alice robots and four spots.

undesirable features (e.g., cancer cells, pollutants), and destroy or neutralize them.
Such robots are likely to have poor sensing capabilities, and thus may be prone to
confusing “good” and “bad” features. Further, they may not be sufficiently powerful
or large enough to destroy such features alone.

In a previous contribution, we employed collaboration and consensus between
robots as a simple and scalable mechanism for solving this problem using a bottom-
up model-based approach [11]. In the present paper, we build upon our previous
work to gain deeper insights into the limitations of miniature robots, as well as into
the model-based methodologies that have been proposed for the design and control
of large groups of such miniature robots.

The design and control methodology that we used in [11] is essentially bottom-
up; that is, we start with a real implementation of the real system (or faithful sim-
ulations of the system), and then build up a series of increasingly abstract models,
carefully validating each against those at lower abstraction levels. This approach has
been very successful in designing a large variety of distributed systems [8, 10, 13].
One important benefit of this approach is its direct anchoring to reality, enabling one
to predict and optimize the performance of the real system. However, bottom-up ap-
proaches generally yield macroscopic models that are difficult to analyze mathemat-
ically (e.g., non-linear, time-delayed systems of differential or difference equations,
sometimes partial). More critically, while they allow for a precise design of the
microscopic behavior based on simple, robust techniques (e.g., behavior-based con-
trol), they also require a good deal of intuition for achieving the desired coordinated
behavior at the macroscopic level (i.e., they are non-constructive).

In contrast, top-down approaches start with an idealized, often highly abstracted
representation of the system (e.g., graph-based), thus benefiting from the full breadth
of related analytical tools, including very powerful design and optimization schemes
(e.g., convex optimization, integer programming, linear control methods, etc.).
However, this design methodology generally requires very strong and unrealistic as-
sumptions (e.g., perfect localization, discrete environment, absence of noise, etc.),
possibly leading to degraded performance when implemented on the target system.
Furthermore, top-down approaches usually neither predict real system performance
nor provide bounds for performance loss; complete collapse of the collective dy-
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Table 1 Notation used in the paper. Note that the notation of variable x without mentioning the
time (by opposition to the notation x(t)) is a simplified way to write x(∞), i.e., the value of the
variable after convergence has been attained.

Variable Description
N Number of spots
R Number of robots

K = (ki j) Transition rate matrix
f (·) Objective function for the Semi-Definite Program (SDP)

xd = (xd
i ) Desired distribution of robots

xi(t) Number of robots at spot i
1i, j(t) 1 if robot j is at spot i at time t

χ(κ, κ̂) Probability that a spot with threshold κ is measured as a spot with
threshold κ̂

Λκ Destruction rate of spots with threshold κ

Nκ Number of different thresholds a spot can have

namics is not to be unexpected, especially when dealing with highly stochastic sys-
tems, as is often the case with swarms of miniature robots.

Our contribution is two-fold. First, we show how top-down approaches (widely
used by other researchers [1, 9]) can be applied to a case study that was specifi-
cally designed as a benchmark for control methodologies for resource-constrained
distributed robotic systems. In particular, we propose a top-down solution based
on graph theory to the problem presented in [11]; this approach yields a semi-
centralized control, in which robots are essentially autonomous, but exploit infor-
mation broadcasted by a central planner. Second, we propose a bottom-up solution
that relies solely on local information, and yields a fully distributed controller, which
is optimized for a wide range of scenarios.

This paper is organized as follows: Section 2 provides a detailed description of
our particular case study, and Section 3 describes both the top-down and the bottom-
up solutions. Section 4 analyzes the performance of our approach using a combina-
tion of simulation and real experiments. Section 5 summarizes our findings and
discusses future work. The notation used in this paper is summarized in Table 1.

2 Problem Statement

The problem described and solved in [11] is a generalization of the stick pulling
experiment [5], in which pairs of robots must collaborate to pull sticks out of the
ground. Here, sticks are replaced by N circular patches of light (referred to as spots)
randomly scattered throughout a bounded arena of area Atot . R robots wander about
the arena looking for these spots, and attempt to destroy them. This problem is
henceforth referred to as the collaborative spot-destruction problem. The spots have
a random characteristic threshold κ ∈ [1, . . . ,Nκ ], and will not be destroyed unless
κ robots are inside the spot1. Importantly, the intensity of a spot is a Gaussian ran-

1 Note that, in [11], we made a distinction between “bad” spots that need to be destroyed and
“good” spots that must be preserved, but κ was kept constant. In this paper, we assume all spots to
be “bad”, but with varying thresholds κi.
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dom variable with mean Iκ and variance σ2
κ , which both depend on the characteristic

threshold κ . As a result, there is a probability χκ|κ̂ of incorrectly measuring a spot
with threshold κ to be of threshold κ̂ . Furthermore, spots are not destroyed instan-
taneously if xi ≥ κi (where xi is the number of robots at spot i; see Table 1 for all
notations used in this paper), but they rather undergo a destruction process at a con-
stant rate ρ , i.e., they have a “health level” that starts at 1, and decreases at constant
rate ρ as long as κ robots are present in the spot. Upon destruction (i.e., when their
health reaches zero), the spot is relocated at a random location in the arena, and
the experiment continues. The performance of the system is simply given by the
weighted rate of destruction of the spots

Per f .=
Nκ

∑
κ=1

κ ·Λκ (1)

where Λκ = ρ ∑
N
i=1 1{xi≥κi and κi=κ} is the destruction rate of spots with threshold κ .

2.1 Experimental Setup

Our comparison relies mainly on a series of experiments with real miniature robots.
In this study, we use the Alice 2002 mobile robot [2] (Figure 1(a)), which has a size
of 2cm×2cm×2cm, a differential wheel drive that reaches speed up to 4cm/s, and
four infrared sensors that allow the detection of passive obstacles at ranges up to
3cm simultaneously with 4bps bidirectional communication up to 6cm. The testing
environment is a 50cm square arena. Local infrared communication allows aggre-
gated robots to exchange some bits of information, albeit with poor reliability. In the
context of this work, we developed an extension board endowed with two epoxy-
encapsulated photo-sensitive sensors (A9950 11 photocell, Perkin Elmer, maximal
spectral sensitivity at 530 nm) on each side, which allow the robots to “sense” the
gradients and the spots displayed by an overhead projector (see Figure 1(b)).

Obviously, the robots cannot directly interact with these spots, so we employ
an overhead camera in conjunction with SwisTrack, an open-source object track-
ing tool targeted to multi-agent systems [7], to emulate this interaction in software.
In order to obtain an accurate measure of both the position and the orientation of
the robots, we use markers that consist of two LEDs of different colors (red and
green). Our system constantly integrates the trajectory of each robot and updates
the environment accordingly, i.e., it detects the destruction of spots and modifies the
display by relocating destroyed spots.

3 Control Strategies

3.1 Preliminaries

The collaborative spot-destruction problem is a typical dynamical allocation prob-
lem, i.e., one requires the presence of κi robots at spot i, and the robots must be
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re-distributed after each spot destruction as fast as possible. The solution to this
problem is two-fold: (1) one needs to determine the optimal distribution of robots xd

over the set of spots, and (2) one needs a strategy to distribute the robots according
to xd in a scalable and efficient manner.

Section 3.1.1 provides a concise solution to the first problem, which depends only
on the number of robots R, the number of spots N, and their respective characteristic
thresholds κ .

Sections 3.2 and 3.3 describe two distinct strategies (top-down and bottom-up,
respectively) to distribute the robots according to the desired distribution xd . The
relevance and the performance of these strategies depend not only on the number
of robots, but also on their capabilities (e.g., computational power, communication
and sensing capabilities, localization, etc.) as well as the amount of information
available to the central planner, if any.

3.1.1 Optimal desired distribution

Determining the desired distribution xd that maximizes the system performance
(Equation (1)) is non-trivial, especially if Nr < ∑i∈S κi where S denotes the set of
spots. Fortunately, one can construct the desired distribution xd such that the perfor-
mance of the system is optimal2 by solving the following optimization problem:

x = argmax
x

E[Perf.|κ̂] = argmax
x

Nκ

∑
κ=1

E[κ ·Λκ |κ̂]

= argmax
x

Nκ

∑
κ=1

κ ·E[Λκ |κ̂] (2)

E[Λκ ] = ρ

N

∑
i

Pr{xi ≥ κi∩κi = κ|κ̂i}

= ρ

N

∑
j

Pr{xi ≥ κi}
χ(κ, κ̂i)

∑
Nκ

λ=1 χ(λ , κ̂i)
(3)

where, assuming that xi is a sequence of i.i.d. binomial random variables,

Pr{xi ≥ j}=
R

∑
l=κ

(
R
l

)
xl

i (1− xi)
R−l

and κ̂i is the estimate of the threshold of spot i.
Because of the use of binomial random variables, the problem is non-convex.

However, one can solve this problem using nonlinear programming (we used the
MATLAB function fmincon), with initial conditions given by a simple heuris-

2 Note that we assume here that the system is optimal after convergence, and we do not optimize
for the speed of convergence.
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tic that distributes the robots on the spots with large κi (but smaller than the total
number of robots) first.

3.2 Top-Down Strategy

We use a novel technique developed by Berman et al. [1] that allows one, under
certain assumptions, to distribute unlabeled robots over a set of spots in an arena
in a scalable and efficient manner. To achieve that, an omniscient central planner3

needs to (i) construct a graph G = (S,ξ ) whose vertices are the spots, and whose
edges are feasible paths connecting the spots, (ii) compute the optimal transition
rate matrix K = (ki j) that allows for the fastest convergence, and (iii) broadcast
both G and K to the robots.

Interestingly, the spot-destruction problem can be thought as an allocation prob-
lem, i.e., it requires the presence of κi robots at spot i. Our solution is therefore to
steer the swarm of robots to a given desired distribution xd using the technique de-
scribed above; upon the destruction of a spot, the central planner computes new G

and K and broadcasts them to the robots.
However, beyond this intuitive similarity, many details are left to be worked out.

In particular, the many assumptions made in [1] need to be relaxed throughout the
process of implementation. For instance, we shall optimize the transition rates while
retaining their feasibility on a real robotic system (Section 3.2.1); also, we shall
determine the desired distribution xd for finite number of robots (Section 3.2.2), as
well as a method for constructing both G and K such that they can be broadcasted
to resource-constrained robots such as the Alice robot (sections 3.2.3 and 3.2.4).
Hereafter, we discuss each of these assumptions by proposing either an objective
criterion for their validity, or a metric of their impact on the system performance.

3.2.1 Optimizing Transition Rates

The optimal transition rate matrix K is computed by the central planner, which
solves a Semi-Definite Program (SDP) [3] that finds the transition rates from one
spot to another that ensure the fastest convergence to the desired distribution. More-
over, given the right set of constraints, the transition rates can be such that after
attaining convergence, the system makes as few transitions as possible (so that they
are feasible in the context of a real robotic system). The constraint of limiting tran-
sitions after convergence can be formulated in two different ways:

f (K) = ∑
(i, j)∈ξ

ki j xd
i (4)

or, f (K) = max
(i, j)∈ξ

ki j xd
i (5)

3 For the sake of scalability, the central planner does not know about the position of each robot.
Also, in [1], the central planner assumes that there is an infinite number of robots.
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Equation (4) limits the total number of transitions per time unit after attaining equi-
librium, while Equation (5) limits the maximum number of transitions per time unit.
To solve the SDP problem, we use CVX, a MATLAB package for specifying and
solving convex programs [4].

3.2.2 Infinite number of robots

One fundamental assumption of the method proposed in [1] is that an infinite (or
at least very large) number of robots are involved in the system. The finiteness of
the population introduces a steady state error that grows as the number of robots
decreases; an infinite number of robots would allow us to attain any distribution with
an arbitrarily small degree of accuracy. However, since we have a finite number of
robots, we expect to see some difference between the desired and actual distribution
of robots, even after convergence. This steady state error has to be characterized in
order to determine whether the given distribution has converged or not. The distance
of the actual distribution from the desired distribution is defined as the square of the
l2-norm:

‖x(t)−xd‖2 =
N

∑
i=1

(
xi(t)

R
− xd

i

)2

, (6)

which is also the definition used by Berman et al. in [1].
Assume that the system is at equilibrium, and xi(t) = ∑

N
j=1 1i, j(t). In this case,

each robot can be at spot i with probability xd
i . Also, each robot moves independently

of the others. Hence, variables 1i, j are independent for each robot4. Therefore, we
have (assuming t→ ∞):

E[Dist.] = E[
1

R2

N

∑
i=1

(xi−Rxd
i )

2]

=
∑

N
i=1 E

[
x2

i −2Rxd
i xi +(Rxd

i )
2
]

R2

E[x2
i ] = E[∑

l,k
1i,l ·1i,k] = R · xd

i +R(R−1) · (xd
i )

2

Hence, E[Dist.] =
1
R

N

∑
i=1

(xd
i − (xd

i )
2) =

1−∑
N
i=1(x

d
i )

2

R
(7)

This value in Equation (7) can be calculated for a given desired distribution, number
of spots and number of robots. As a result, it is clear that the performance of the real
system, given its finiteness, will always be overestimated; Equation (7) is a measure
of how inaccurate the actual distribution will be at steady state for a finite population
of robots.

4 Actually, they have to follow the additional constraint ∑
N
i=1 ∑

R
j=1 1i, j = R to conserve the number

of robots. However, they are independent for each robot, which is the property used.
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3.2.3 Graph structure

One general assumption made by Berman et al. [1] is that the underlying graph G is
strongly connected (i.e., a directed path exists between any pair of distinct vertices).
As discussed in Section 3.2.4, our method of broadcasting the graph structure to the
robots imposes that edges must be unidirectional; indeed, gradients must be wide
enough for robots to follow them while being non-overlapping .

In this paper, we construct a maximal planar graph using Delaunay triangulation
(in O(n logn) time), and then an arbitrary triangle is turned to a cycle, and is cho-
sen as the starting graph. The other spots are added one by one, keeping the graph
strongly connected. Compared to other graph structures such as cycles, Delaunay
graphs have maximum connectivity under our constraints and therefore result in the
fastest convergence.

3.2.4 Broadcast and navigation

Another fundamental assumption made by Berman et al. [1] is that the central en-
tity can broadcast the graph structure G and the matrix K to the robots. In turn, the
robots shall be able to navigate along the edges of the graph. However, resource-
constrained robots such as the Alice are generally endowed with very poor and un-
reliable communication and navigation capabilities, thus making these assumptions
very unrealistic. Furthermore, computation, energy, and memory limitations impose
severe restrictions on the use of advanced map-based navigation algorithms.

In this paper, we propose an original solution based on augmented reality to solve
this problem using a simple, almost reactive, algorithm. Light gradients depicted on
the arena by a video projector allow the central planner to locally tune the robots’
behavior such that it accounts for the plan optimized at the macroscopic level.

More specifically, the central planner draws gradients between spots; intensity at
the darker end of the gradient originating from spot i to spot j is related to the net rate
of transition from spot i (exit rate ∑ j ki j), and the width of the edge is proportional
to ki j/∑l kil . The robot wanders about randomly in the spot until it encounters a
gradient at its border. After getting an estimate of ∑ j ki j, the robot draws Texp from
an exponential distribution with rate ∑ j ki j (or with mean 1/∑ j ki j).

If the robot has already spent more than Texp units of time in the spot, it makes
the transition. Otherwise, the robot waits until it has spent more than Texp units of
time in the spot, and then makes the next transition. This ensures that the rate of exit
of robots from the spot is the closest that we can get to ∑ j ki j, as required. Also, the
probability of choosing an edge to spot j is directly proportional to the width of the
edge or ki j/∑l kil . If these choices are made independent of the activity of the robot
in the spot, then by thinning of Poisson processes [12], we know that the transitions
from spot i to j is dictated by a Poisson process with the parameter ki j, as required.

The range of intensities that are available to represent the gradients is limited
by the operating range of the light sensor as well as the intensity of the projector.
Hence, instead of using constraint (4) or (5), a different objective function needs to
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be minimized:
f (k) = max∑

j
ki j (8)

After obtaining the transition matrix K, we can scale it such that the maximum
value of ∑ j ki j can be represented by the available intensity range. We denote the
scaled transition matrix Kopt .

3.2.5 Robot controller

Finally, one needs to translate the solution described in the previous sections into an
actual robot controller. There is no automated way of constructing such a controller;
however, in a top-down approach, the designer merely encodes the various require-
ments prescribed at higher abstraction levels in the robot controller while accounting
for the technological limitations of the robotic platform. In our case, robots are pro-
grammed with a simple behavior-based controller composed of five states: search,
climb, in spot, probe, and u-turn. Other auxiliary states are used, but they are not
mentioned here for the sake of clarity. Figure 2 depicts the state chart of the robot
controller.

In the state search, the robot performs a simple random walk, i.e., it alternates
between forward motion and tumbling in a random direction. If the robot detects
a gradient, it transitions to the state climb; in this state, the robot moves up the
gradient using a simple reactive scheme, very similar to Braitenberg vehicles. When
no change in intensity is detected, it means either that the robot is in a spot if the
intensity is high (transition to the state in spot), or that the robot is lost if the intensity
is low (transition to the state search). In the state in spot, the robot simply moves
forward; upon detecting a drop in intensity (i.e., the robot reaches the border of
the spot), it transitions to the state probe and stops. In the state probe, it samples
its light sensors for a certain amount of time. Depending on the average of these
measurements, the robot may transition to either of two states: (i) if it encountered
an outgoing gradient and it has already spent more than Texp units of time in the
spot5, then it transitions to the state climb; (ii) if it encountered an incoming gradient
or it has spent less than Texp units of time in the spot, then it transitions to the state
u-turn.

3.3 Bottom-Up Strategy

In the bottom-up strategy, we start with a very simple behavior-based controller,
which we optimize using a suite of models at different abstraction levels. One of
the interesting feature of the bottom-up approach is that it deals with the intrin-

5 If the robot encounters an outgoing gradient for the first time since entering the spot, it first draws
Texp from an exponential distribution whose mean is inversely proportional to the average intensity
of the gradient. Furthermore, because of the very limited computational power available on our
robotic platform, we use a lookup table to generate these random numbers.
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wander climb in spot 

u-turn probe 
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intensity  
changes stable  

intensity 

intensity drops 

T < Texp or no 
vertex 

detected 

timer 

T > Texp and vertex 

detected 

Fig. 2 Finite State Machine (FSM) of the robot controller yielded by the top-down approach.

sic limitations of the systems rather than setting requirements that are not neces-
sary feasible. For instance, in our particular case study, the controller is fully dis-
tributed: we no longer assume that an omniscient central planner is broadcasting
pieces of information to the robots. Instead, the robots exploit local information (in
our particular case, the intensity of the spots) to tune their behavior in a way that is
optimal for a wide range of scenarios (i.e., for various combinations of spot thresh-
olds κi for i = 1, . . . ,N). More specifically, no gradient is pictured on the arena, and
the robots explore the arena by performing a random walk similar to that described
in Section 3.2.5. Upon detection of a differential in light intensity, a robot enters
into the spot, and starts exploring it. When reaching the border of the spot, the ro-
bot leaves the spot it is exploring with a probability pleave(κ̂), which depends on its
estimate κ̂ of the threshold of the spot. Figure 3 depicts the state chart of the robot
controller.

One important difficulty with this approach is that one need to define the optimal
leaving probabilities popt

leave(κ̂) for κ̂ = 1, . . . ,Nκ such that the distance between the
desired distribution xd and the actual distribution x(t) of robots over the set of spots
is, in average, minimal. Note that it means that we are only interested in optimiz-
ing the average performance over the set of all possible combinations of threshold
values.

To solve this problem, we use a genetic algorithm (GA) coupled with a simple
macroscopic model of the system to determine the optimal leaving probabilities for
a given number of spots and robots. The genome is simply the real valued vec-
tor pleave =

[
pleave(κ̂ = 1), . . . , pleave(κ̂ = Nκ)

]
, and the population size is 20 in-

dividuals (crossover fraction = 0.8, mutation rate = 0.2, with 2 elite children). The
fitness function is the square of the l2-norm (Equation (6)) between the desired dis-
tribution xd and the actual distribution x(t) of robots at time t yielded by the set of
leaving probabilities pleave at t = 100 s. Therefore, we do not optimize the system
for fastest convergence; rather, we target an optimal, though transient, performance
at t = 100 s, which is compatible with the dynamics observed in the real system.
Also, the optimization does not assume any prior knowledge about the thresholds κi
of the spots; rather, the fitness of each individual is averaged over a test set of 100
randomly generated scenarios.
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However, since a typical GA run involves more than one thousand evaluations of
the fitness function, one needs a very efficient computational model for predicting
the distribution x(t). Section 3.3.1 describes the construction of such a model.

3.3.1 Chemical Reaction Network

In this section, we construct the macroscopic model that is used in conjunction with
the GA; we use a Chemical Reaction Network (CRN) formalism to model the in-
teractions between robots and spots. A CRN can be represented as a directed graph
G = (V,E). The set of vertices V represents the complexes, i.e., state variables that
denote the number of robots in a given state. The set of directed edges E represents
the reactions between complexes, i.e., the transition of a robot from one state to the
other. Each reaction can be denoted by an ordered pair (i, j) ∈ V×V, meaning that
one complex i transitions to complex j. Furthermore, each reaction is associated
with a rate constant.

From a methodological standpoint, CRNs are well suited to the bottom-up con-
struction of macroscopic models, as one can easily translate the controller of a robot
(which is described as a finite state machine) into a CRN (Figure 3).

wander climb in spot

u-turn probe

lost

spot 

detected stable 

intensity

intensity 

drops
timer

X < Pleave

X > Pleave

wander
in spot 1in spot 1in spot 1in spot 1

rl

re

wander in spot

rl

re

merge states into complexes

split complexes

(A)

(B)

(C)

Finite State Machine

(robot controller)

Chemical Reaction 

Networks (CRNs)

Fig. 3 Translation of the FSM of the robot’s controller into a CRN. (A) → (B): The states of
the FSM that are irrelevant to the collective dynamics (generally because the robot spends a short
amount of time in them, or because they do not modify the state of the ensemble) can be merged
into a single complex of the CRN (e.g., the states climb, in spot, u-turn, and probe are merged into
a single complex in spot). (B)→ (C): The complexes that need to account for states that are hidden
at the level of the robot’s controller can be split into multiple sub-complexes (e.g., the model needs
to track the spot the robot is in, and the complex in spot is therefore split into N sub-complexes).
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Fig. 4 Distance (on a log-
arithmic scale) between the
actual distribution at time t
yielded by stochastic sim-
ulations of the top-down
approach for different number
of robots (30 runs, marker
denotes the mean, and er-
ror bars the 95% confidence
interval) and the desired
distribution xd . The dashed
horizontal lines denote the ex-
pected distance according to
Equation (7). We shall outline
the excellent agreement be-
tween numerical simulations
and the analytical prediction. 0 20 40 60 80 100
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Therefore, one can write the following set of reactions:

Xs
re


rl,i

Xi ∀i ∈ S (9)

where S denotes the set of spots, Xs the number of robots searching for spots, Xi the
number robots in spot i, re is the rate at which a robot encounters a spot i, and
rl,i is the rate at which a robot leaves the spot it is exploring, which also depends
on its threshold κi. The identification of the rates re and rl is based on geometric
approximations described in previous work [11].

In order to yield quantitative predictions, CRNs are converted into two types of
models: (i) macroscopic (macro-discrete) models, i.e., continuous-time Markov pro-
cesses whose states represent discrete numbers of robots, or (ii) macroscopic con-
tinuous (macro-continuous) models of ordinary differential equations (ODE) whose
state variables represent continuous fractions of the robotic population.

We use the StochKit toolbox [6] in order to perform stochastic simulations of
macro-discrete models. Also, we convert CRNs into macro-continuous models us-
ing the relation ẏ = S ·p(y) where S = (si j) is the stoichiometry matrix, with the sto-
ichiometric coefficient si j of the j-th species in the i-th reaction, and is the propen-
sity vector p(y), which depends on the reaction rates and the population of reac-
tants for each reaction. Then, we numerically integrate this system of ODEs using
MATLAB’s ode15s function. Using this model, the evaluation of one individual
takes about 3.5 seconds on 2.66 GHz quad-core processor with 8 GB of RAM,
which is two orders of magnitude faster than 100 runs of stochastic simulations
using StochKit.
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Table 2 Summarized results of three experiments (top-down, bottom-up, and baseline, 10 runs of
20 minutes each) using 6 real Alice robots and 4 spots (with κ ∈ [1,2,3]). The system performance
is computed using Equation (1). The distance between the actual distribution x(t) and the desired
distribution xd of robots is given by Equation (6), and averaged over all sampled data points.

Metric Moment Case studies
Top-down Bottom-up Baseline

Performance
mean 0.81 0.89 0.58
median 0.85 0.95 0.57
std dev 0.25 0.27 0.22

Distance ‖x(t)−xd‖2
mean 0.36 0.37 0.25
median 0.39 0.36 0.25
std dev 0.11 0.06 0.02

4 Results and Discussion

As discussed in Section 3.2.2, the top-down approach relies on an optimization
scheme that assumes an infinite number of robots6; therefore, the actual distribu-
tion of robots over the set of spots is always different, in average, from the optimal
distribution. The distance between these two distributions can be predicted for any
given number of robots using Equation (7). Figure 4 provides a validation7 of this
expected distance using stochastic simulations.

One of the main finding of our experimental study is that the top-down ap-
proach does not perform significantly better (or worse) than the bottom-up ap-
proach with the leaving probabilities yielded by the GA (i.e., popt

leave =
[
pleave(κ̂ =

1), . . . , pleave(κ̂ = Nκ = 3)
]
=
[
0.335,0.0002,0.005

]
). However, one also needs to

check that these optimized controllers do not actually perform the same as any other
non-trivial controller. We rule out this hypothesis by performing a third type of ex-
periments that use a so-called baseline controller, which is essentially the bottom-up
controller with all leaving probabilities set to zero. A non-parametric statistical test
shows that both the top-down and the bottom-up controllers perform significantly
better (with respective p-values of 0.037 and 0.025 using Mann-Whitney test) than
the baseline controller. Table 2 summarizes the results of these experiments. In par-
ticular, we shall outline that the large variability of both the system performance
and the average distance between the actual distribution and the desired distribu-
tion of robots does not allow one to conclusively determine which of the optimized
controllers perform best in the context of study. Our results merely show that a so-
phisticated approach such as the one proposed by Berman et al. [1] does not bring
any significant performance increase in the context of our case study, in spite of the
supplementary infrastructure it uses.

6 Note that the bottom-up approach proposed in this paper also assumes an infinite number of
robots for optimizing the system. However, this assumption is a deliberate choice of the designer
made for efficiency purposes (since it allows for converting the CRN to a macro-continuous model,
which is several orders of magnitude faster than stochastic simulations), and supported by a careful
validation of the macroscopic models.
7 This result is validated here in the context of the top-down approach, but it is very general and
valid for the bottom-up approach as well.
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There are multiple reasons why the extra information provided to the robots in
the top-down approach does not significantly improve the system’s performance.
First, when the density of spots is high enough, a simple search behavior such as
the one used in the bottom-up approach does not perform significantly worse than
gradient ascent, because robots can compensate for their lack of information with
higher velocities. Second, the interaction between robots in a spot dramatically af-
fects the transition rates; for instance, when two robots collide and avoid each other
near the border of a spot, one may get lost during the maneuver. Also, when a spot
is explored by many robots, the time they spend avoiding each other becomes non-
negligible, thus modifying the effective exit rate. Last, the assumptions underlying
our formulation of the expected system performance provided in Section 3.1.1 are
not necessarily met in reality. In particular, dispatching more than κi robots to a
given spot i may actually be beneficial because, again, it makes the system more
robust; this fact explains the discrepancy between performance and distance to the
desired distribution observed in our experimental results. Finally, and most impor-
tantly, the presence of noise in sensor measurements and the inhomogeneity of the
projected picture dramatically affect the effective transition rates.

As a result, robust approaches are favored over complex strategies. In our bottom-
up approach, leaving probabilities are not specifically optimized for a given config-
uration, but rather for a wide range of scenarios; therefore, the performance loss
observed during the process of implementation is less than in the case of the system
developed using a top-down scheme. To verify this assertion, we performed 50 runs
of realistic simulations using Webots, a physics-based mobile robot simulator. On
the one hand, the top-down approach performed significantly better in simulation
(mean = 2.21, median = 2.21, std dev = 0.35) than in reality (mean = 0.81, median
= 0.85, std dev = 0.25, see Table 2). However, the performance of the bottom-up ap-
proach in simulation remained stable (mean = 0.91, median = 0.95, std dev = 0.35).
The main difference between simulation and reality lies in the modeling of noise; we
assume a Gaussian noise on the light sensors, but the inhomogeneity of the projected
picture actually yields time-dependent and space-dependent multimodal noise dis-
tributions in reality. Also, most of the technological limitations of the platform (e.g.,
memory, resolution of analog/digital conversion, limited floating point handling) are
not captured in the simulations.

These findings confirm the better robustness of the bottom-up approach; how-
ever, the top-down approach allows for a much better theoretical tractability at the
macroscopic level, and, in particular, the use of efficient optimization methods such
as linear and non-linear convex optimization.

5 Conclusion

In this paper, we compared the strengths and weaknesses of bottom-up and top-
down model-based methodologies for designing distributed controllers. Of course,
our study does not expose all the features that make either approaches more or less
suitable to a given system; this endeavor is by itself a whole body of future research.
The point we aim to make in this paper is simply that conventional top-down design
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of multi-robot systems is generally not amenable to efficient implementation using
resource-constrained robots; faithful and computationally efficient models built in-
crementally from the bottom up are an essential ingredient to the design and the
control of such systems. Ultimately, we believe that these two approaches should be
combined into a more powerful model-based control design methodology that has
the potential to achieve higher, more tunable coordination at the macroscopic level
while incorporating all a priori known technological limitations at the microscopic
level.
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