
Semester project report

Utkarsh Upadhyay (utkarsh.upadhyay@epfl.ch)

June 20, 2010

Abstract

This report summarizes the work done as part of a semester project under the supervision of Prof.
Rachid Guerraoui and Maxime Monod. The project addresses two distinct problems in the context
of detection and blacklisting of freeriders in the context of high-bandwidth content dissemination
with a gossip-based protocol. LiFTinG is a protocol designed to detect freeriders, or nodes which do
not contribute their fair share of work to the system in order to save their bandwidth [5]. The first
problem was to model gossip in a way which is amenable to predict how many nodes should blacklist
a given node to reduce the number of packets being received by it by x%. This can be useful in
knowing how to send the revoke messages in LiFTinG. The second part of the project concentrated
on an implementation of LiFTinG complemented with a new protocol acting as a replacement for
AVMON [9]. Such a score management protocol is designed and its implementation discussed.

1

Page intentionally left blank

2

Contents

1 Introduction 5
1.1 Outcasts . 5
1.2 Score management . 6

2 Outcasting nodes 7
2.1 Models for gossiping . 7
2.2 The basic epidemic model . 7

2.2.1 Verification . 9
2.3 Modeling outcasts using mean field theory . 9

2.3.1 Verification . 12
2.4 More than one outcast . 13

2.4.1 Verification . 15
2.5 Model predictions for the outcast node . 15
2.6 Conclusions . 16

3 Implementing score management for LiFTinG 17
3.1 Central blaming entity . 17
3.2 AVMON . 17
3.3 Properties of an ideal score management protocol . 18

3.3.1 Completely unstructured managers . 19
3.4 Alternate solution: Caching addresses . 19

3.4.1 Nodes joining and leaving the network . 20
3.4.2 Comparison with AVMON and AVCast . 21

3.5 Conclusions . 22

4 Conclusion & Future work 23

5 Acknowledgments 23

Appendix 24

References 28

3

Page intentionally left blank

4

1 Introduction

LiFTinG is a protocol for efficiently catching and blacklisting freeriders in a network which requires
equal participation from each node to perform at its best. The protocol is discussed in [5] and there
are certain questions which remain open as to the implementation of certain components of this
protocol over a network.

The LiFTinG protocol describes certain tasks a node has to perform (direct checks, cross-
checking, etc.) apart from the gossip-based three-phase protocol to calculate scores for the nodes
it is communicating with. Hence, after a round of data dissemination, some nodes in the system
(called reporters) may generate a score for some other nodes (called blamed nodes).1 These scores are
accumulated for all blamed nodes present in the network and finally when the score of a particular
node falls below a threshold, that node is blacklisted and is not forwarded any data anymore. The
basic structure of the protocol is demonstrated in Figure 1.

(c) Routine on each reporter (d) Routine for each blamed node

Figure 1: LiFTinG protocol

This project limits itself to investigating how to concretely implement the score management,
and the closely related blacklisting mechanism. Broadly, these are the boxes shown in red in the
flowchart. The two parts of the projects are introduced in the Section 1.1 and Section 1.2 and the
details are given in Section 2 and Section 3. The overall conclusions of the project are given in
Section 4. Two appendixes are also added to explain further some aspects of the report.

1.1 Outcasts

The first part of the project deals with the problem of how many nodes should blacklist a given
node such that the fraction of data reaching the node attenuates by at least x%. It is assumed that
playing less than 99% of the stream is enough for the node to opt out of the network on its own.
Hence, causing 1% reduction in received quality would suffice for blacklisting the node. However,
with w% forward encoding, the fraction of packets begin received by the revoked node must fall by
100%− w%.

The interest in this problem are manifold:

1. If the fraction is low, then only a fraction of nodes would need to blacklist the freerider so that
reception of the stream is low enough for the node to opt out of the network on its own. It
would give us a hint at how widespread should be the reach of the revoke message to ensure
blacklisting2 with a high probability.

2. If the requisite fraction of nodes maintained the score of the freerider and made individual
decisions to outcast the freerider, then no revoke message would be needed.

1The exact mechanism of these score calculations is out of the scope of this report and is described in [5].
2In case of 10% FEC, it would translate to reducing reception quality of the revoked node by 10%

5

To this end, gossip was modeled using the classical epidemic propagation models [2] and the
interaction of the outcast with the rest of the network was done using mean field equations [11].

The model predicted that about 60 to 80% of the nodes would need to revoke the outcast for
the reception quality at the outcast to fall by 10% for systems with up to about 1000 nodes. These
results were verified using simulations.

After verification on a smaller scale, the model was used to predict the fraction of nodes which
should contact the outcast for the outcast node to receive less than 90% of the data. It was observed
that the requisite fraction decreased as the number of nodes in the system increased. The implication
of these findings are discussed later.

1.2 Score management

The design of a score management protocol for LiFTinG requires solving two separate problems:

1. Reporting scores: This task is to be undertaken by each node in the network as seen in
Figure 1(c).

2. Accumulating scores and revoke messages: This task is to be undertaken for each blamed
node in the network as seen in Figure 1(d).

Subsequently, this unit in LiFTinG admits various implementations:

• Centralized blaming server

• Hash based managers (as used in AVMON [9] and AVCast [10]

• Decentralized managers for different nodes

In the central blaming entity design, the second task is being done by a central server, which
clearly does not scale. In the case we have hash based managers, the second task is undertaken by all
the managers of any given node in the system, and as on an average, each node managed a constant
(O(1)) number of other nodes in the system, this design scales well. However, this introduces a
structure in the graph which is undesirable.

Hence, a protocol is designed which solved problem two by having each node manage O(logeN)
other nodes, but obviating the requirement of a consistent hash functions. To solve the first problem
of efficiently reporting scores, a gossiping protocol is designed with some insights offered by the
analysis done in the first part of the project. However, upon implementation, it was observed that
this approach does not scale.

A new protocol is then designed to efficiently solve the problem of reporting the blames. The
performance of the new protocol is compared with some other protocols in Section 3.4.2.

Preliminary analysis suggests that in terms of overhead, hash based manager allocation per-
form better than unstructured manager allocation. However, whether it is possible do better than
the suggested protocol while not introducing any more structure in the network remains an open
question.

6

2 Outcasting nodes

This section describes in detail the modeling of outcasts within the gossip protocol. As indicated
above, the primary problem we look at here is how many nodes should outcast a node n such that
the amount of data received by n falls by x%. Knowing the answer to this question would help us
in designing protocols which can provide probabilistic guarantees about what effect the dynamics of
a self contained gossiping network would have on one individual node which is treated differently by
different nodes in the network.

Though this individual is modeled as an outcast, it could have been a new node joining the
system, or a passive monitoring entity which was probing the system to get a sample of the stream.
The model developed is general enough to handle such cases.

In Section 2.1, the other models for gossiping are briefly described. The modeling developed
for gossiping is detailed in Section 2.2 followed by modeling of one outcast in Section 2.3. A small
extension of the model can be used to analyze the case when a constant fraction of nodes are
outcast. This extension and the problems in modeling such a behavior are presented in Section 2.4.
The discussion of the model predictions follows in Section 2.5 followed by the conclusions in Section
2.6.

2.1 Models for gossiping

There are multiple ways of modeling gossiping which are useful for analyzing different aspects of the
dissemination in a gossip-based protocol and answering different questions. The most common ones
are described here:

• Erdös Rényi model: This model concentrates on the path traced by a particular packet from
the source to the destination and models this path as a random graph. Using the connectivity
of the graph, one can prove results about the broadcast being atomic, or other properties which
involve properties dependent on all nodes [8]. Modeling the behavior of one particular node
among n other nodes is not easy. Hence, this model is not ideal for analyzing outcasts in an
dynamic random network.

• Macro-Discrete models: These models keeps track of the probability distribution of the
number of nodes in different states in the model at any given round [7]. Though these models
can in some cases be efficiently simulated [4], this model becomes fairly intractable for a large
number of nodes owing to the complex combinatorics of gossiping. The epidemic SIR model
can be seen as a continuous approximation of this model which concentrates only on the mean
values.

The model, initially created to study spread of epidemics, is the classical model used for studying
gossiping like behaviors [2]. Apart from being tractable because of succinct expression as coupled
ordinary differential equations, this model also possess the Markovian property. The behavior of one
individual with respect to a large population evolving according to some Markovian rules can be
modeled using mean field theory [11]. Hence, an epidemic based model was developed for gossiping.
The behavior of an individual to a gossiping population was subsequently modeled using mean field
equations.

2.2 The basic epidemic model

The basic model describes the expected delivery of one packet in a network. As all the packets are
disseminated independently of each other, it is easy to see that the long term expected behavior of
packets will be the same. Actually, the following two questions are equivalent:

• How many nodes should outcast a node so that it receives less than x% of data?

• What fraction of nodes should outcast a node such that the probability of 1 packet reaching
the outcast is less than x%?

The model gives an answer to the second question by tracing the dissemination of 1 packet in the
network. The set of nodes in the network are partitioned into three distinct sets which evolve over
time:

• s(t): The fraction of susceptible nodes, or the nodes which have not yet received the packet
sent from the source.

7

• i(t): The fraction of infected nodes, or the nodes which have received the packet, but have not
forwarded the packet yet.

• r(t): The fraction of recovered nodes, or the nodes which have received the packet, have duly
forwarded it, and have finished their role in the protocol.

Capital letters would be used to denote the set of nodes which belong to the respective fractions,
that is S(t) would be the set of nodes which are susceptible and s(t) = |S(t)|

N
, and similarly for I(t)

and R(t).
Note here that the expressions susceptible nodes, infected nodes, and recovered nodes will be used

to denote the respective set of nodes to remain consistent with the classical terminology. Figure 2
shows the status of the network and the susceptible, infected and recovered sets at two snapshots of
the system at times t and t + δ. Also, the nodes chosen by one node to communicate with in one
round will be called the fanout set for that node in that round.

(a) S(t) = {3, 4, 5 · · · }, I(t) =
{1, 2}, R(t) = {Src}

(b) S(t + δ) = {6, 7, 8, · · · }, I(t + δ) = {3, 4, 5},
R(t+ δ) = {Src, 1, 2}

Figure 2: Two rounds of gossiping with random peer selection

It can be seen that, owing to the random peer selection, the size of the set of susceptible nodes
S(t+ δ) does not always reduce by f · |I(t)| after every complete round, but, instead, depends also
on how many nodes are present in S(t).

Consider a system comprised of N nodes. Assume that the time increases with steps of 1
N

, so
the time steps become smaller as the size of the system increases. At time t, we have s(t) fraction
of nodes susceptible to infection, and i(t) nodes which can infect. At time t + 1

N
, exactly one node

will be chosen at random. If it is in the infected set (with probability i(t)) it is removed from the
infected set and put in the recovered set. The flow of packets and of nodes is shown in Figure 3(a).

As f nodes are chosen randomly out of N nodes for infection, the expected number of susceptible
nodes infected with the message would be f

N
· |S(t)|. This implies that the fraction of nodes infected

is f ·s(t)
N

. Hence, the change in the respective fractions can be related to the state of the system at
time t in the following way:

s(t+
1

N
)− s(t) = − i(t) · f · s(t)

N
(1)

i(t+
1

N
)− i(t) = i(t) ·

(
f · s(t)
N

− 1

N

)
(2)

r(t+
1

N
)− r(t) =

i(t)

N
(3)

Dividing both sides by 1
N

, and assuming N to be sufficiently large, we get equations governing
the system as:

8

ds(t)

dt
= −f · s(t) · i(t) (4)

di(t)

dt
= f · s(t) · i(t)− i(t) (5)

dr(t)

dt
= i(t) (6)

Initially, only the source has the packet (is infected) and all other nodes are yet to receive the
message (are susceptible). Hence, the initial conditions for the above mentioned system of equations
are:

s(0) =
N − 1

N
(7)

i(0) =
1

N
(8)

r(0) = 0 (9)

Using this model, it is possible to analyze the fraction of nodes that 1 packet is able to reach.

(a) SIR Model (b) Outcast with SIR model

Figure 3: Flow of nodes (solid lines) and flow of packets (dashed lines) in the two models

2.2.1 Verification

First, the SIR model is verified to ensure that gossiping behaves in the desired way by checking
the fraction of nodes reached with different fanouts and the values predicted by the model. As
can be seen in Figure 4(a), except for f = 1 (which is a transition point for the system) the model
fits the actual data fairly well. Figure 4(b) is the predicted temporal evolution of the system for
dissemination of 1 packet. The behavior is, as expected, highly non-linear.

An observation which can be made from Figure 4(a) is that a fanout of 2 is sufficient to reach
80% of the nodes in the network. The implications of this property will be discussed later.

2.3 Modeling outcasts using mean field theory

In an extension of the model, one node (called the outcast node henceforth) is removed from a
network of N + 1 nodes. The other N nodes are partitioned into two classes:

9

(a) Fractions reached with different f for the SIR model (b) Temporal Evolution of system

Figure 4: Predictions of the basic SIR model

• Fraction a of nodes, which do not communicate with the outcast node; that is, they do not
choose the outcast node in their fanout set

• The remaining nodes, which can freely communicate with the entire network

For simplifying the analysis, the following assumptions are made:

1. The source node is always assumed to be in the class which can communicate with the outcast
node. This gives a slightly higher probability of the outcast being infected but the effect is
negligible.

2. The outcast node does not take part in the protocol at all. Hence, it can only be infected, but
it does not follow the protocol any further. This assumption also does not affect the behavior
of the system much, if the number of nodes is large.

Gossiping over the network can be seen as a Markovian decision evolutionary game as all the
decisions made (the choice of f nodes in the fanout set) and the next state of the network (S(t +
dt), I(t + dt), · · ·) are independent of the past states of the network. Hence, the outcast can be
modeled as an individual using mean field equations as described in [11].

Define N1 to be the set of nodes which can communicate with all nodes, and let N2 be the set of
nodes which have revoked the outcast. It is clear that |N1|+ |N2| = N . Now define 5 different sets
(instead of just 3 set of nodes for the SIR model) of nodes. The capital letters denote the number
of nodes, while the small letters would mean the corresponding fraction of nodes. The description
of each class is given in Table 1.

Set Description
I1(t) Number of nodes which are infected in N1

S1(t) Number of nodes which are susceptible in N1

I2(t) Number of nodes which are infected in N2

S2(t) Number of nodes which are susceptible in N2

R(t) Number of N nodes which have been removed

Table 1: Description of variables in the model

The evolution of the system is the same as in the SIR model, with some cross terms introduced
owing to the infections in the set S1(t) done by nodes in set I1(t) and vice versa, as shown in Figure
3(b). The differences in the superficial complexity in the models can be visualized by comparing
Figure 3(a) and Figure 3(b).

10

In addition to these variables, define another attribute of the system, which is a boolean variable
Λ(t) defined as:

Λ(t) =

{
0 if the outcast has not been infected

1 otherwise
(10)

These sets with the boolean variable completely define the state of our system.
At each time step from t to t+ 1

N
, one node x is randomly chosen from the N nodes. There are

three cases to be analyzed:

1. x ∈ I1(t): In this case, it will infect f nodes (chosen from N + 1 nodes) and will be removed
from I1(t) and added to R(t+ 1

N
). A node can be infected only if it either belongs to S1(t) (in

which case it is shifted to I1(t+ 1
N

)) or to S2(t) (in which case, it is shifted to I2(t+ 1
N

))

2. x ∈ I2(t): Similar to case 1, but the choice of f nodes is only limited to N nodes in the network,
without the outcast.

3. If x does not belong to either, then no action is taken.

Now the expected changes made to these variables can be written as:

E[I1(1 +
1

N
)− I1(t)] =

I1(t)

N
·
(
f · S1(t)

N + 1
− 1

)
+
I2(t)

N
· f · S1(t)

N + 1
(11)

E[S1(1 +
1

N
)− S1(t)] = −I1(t)

N
· f · S1(t)

N + 1
− I2(t)

N
· f · S1(t)

N
(12)

E[I2(1 +
1

N
)− I2(t)] =

I1(t)

N
· f · S1(t)

N + 1
+
I2(t)

N
·
(
f · S1(t)

N + 1
− 1

)
(13)

E[S2(1 +
1

N
)− S2(t)] = −I1(t)

N
· f · S2(t)

N + 1
− I2(t)

N
· f · S2(t)

N
(14)

E[R(1 +
1

N
)−R(t)] =

I1(t) + I2(t)

N
(15)

Also, to see the changes in the boolean variable Λ(t), we know that Λ(t) = 0 if and only if the
outcast has not been infected in the system at any previous time step. Also, we know that the
outcast can be chosen only by nodes present in set I1(t). Hence, we have:

E[Λ(1 +
1

N
)− Λ(t)] = Pr[Λ(t) = 0] · (Prob. of infection)

+Pr[Λ(t) = 1] · 0 (16)

Prob. of infection = i1(t) ·

(
1−

(
N

N + 1

)f
)

(17)

≈ i1(t) ·
(

f

N + 1

)
(18)

Let Pr[Λ(t) = 1] := p (19)

= E[Λ(t)] (20)

Then, Pr[Λ(t) = 0] = 1− p (21)

Equation 16 gives:
E(Λ(t+ 1

N
))− E[Λ(t)]

(1− E[Λ(t)])
= i1(t) · f

N + 1
(22)

1

(1− p) ·
dp

dt
= i1(t) · f

N + 1
(23)

Now, we can describe the state of the system as:

MN (t) := [i1(t), s1(t), i2(t), s2(t), r(t),Λ(t)] (24)

= [
I1(t)

N
,
S1(t)

N
,
I2(t)

N
,
S2(t)

N
,
R(t)

N
,Λ(t)] (25)

Then the drift equation, which denotes the expected change in the state of the system in one time
step, can be written as:

~fN (t) := E

(
MN (t+

1

N
)−MN (t) | MN (t) = ~m

)

11

If the probability distributions of the states of the system follow certain technical constraints
(given in [11]), then the expected change in microscopic quantities (I1(t), S2(t), · · ·) can be related
to the rate of change of the macroscopic quantities (i1(t), s2(t), · · ·) by dividing by the time step
dt, which is 1

N
in our case. These constraints reduce to saying that the final state of the system

converges as time tends to ∞ and that the changes in the system at each step are not very large.
Both these constraints are met by our model system. Hence, the differential equations for the states
(which are i1(t), i2(t), · · ·) can be obtained by:

Let M(t) := lim
N→∞

MN (t) (26)

f(M(t)) = lim
N→∞

fN (t)
1
N

(27)

= lim
N→∞

N · fN (t) (28)

Using these techniques, the final equations obtained are the following:

di1
dt

= i1(t) · (f · s1(t)− 1) + i2(t) · f · s1(t) (29)

ds1
dt

= −f · s1(t) · (i1(t) + i2(t)) (30)

di2
dt

= i1(t) · f · s1(t) + i2(t) · (f · s1(t)− 1) (31)

ds2
dt

= −f · s2(t) · (i1(t) + i2(t)) (32)

dr

dt
= i1(t) + i2(t) (33)

dp

dt
= (1− p) · i1(t) · f (34)

As was assumed above, the initial conditions for the system are such that only one node (source)
is infected and the rest of the nodes are all susceptible. Also, fraction a of nodes belong to the set
N1 and the rest to set N2.

i1(0) =
1

N
(35)

s1(0) = a− 1

N
(36)

i2(0) = 0 (37)

s2(0) = 1− a (38)

r(0) = 0 (39)

Λ(0) = 0 (40)

=⇒ p(0) = 0 (41)

The quantity of interest would be Λ(∞) or p(∞), which is the probability with which the outcast
gets infected.

2.3.1 Verification

To test the model with the outcast, multiple experiments were run while varying number of nodes in
the system. Two of these cases are presented here, for N = 100 nodes in Figure 5(a) and for N = 1000
nodes in Figure 5(b). These show a close fit of the simulation data by the model predictions.

Both these experiments were run without forward error correction (FEC). Enabling 10% FEC
was expected to result in more than 99% reception when the data received by the outcast node was
over 90%. The experiments were then run with FEC turned on and the results obtained are shown
in Figure 6. It can be noticed that there is a slight jump near the point where the model predicts
90% reception (more visible in Figure 6(a)). If the node receives more than 90% of the data, it
should be able to reconstruct almost all the packets, or the simulation results should indicate a flat

12

(a) 100 nodes, 1 outcast (b) 1000 nodes, 1 outcast

Figure 5: Verification of model predictions (without any forward error correction)

curve after the 90% reception point (more visible in Figure 6(b)). The increase is much less when
the fraction of nodes contacting the outcast is less than the requisite fraction to provide with 90%
of the data, and can be attributed to variance in packet delivery.

(a) 100 nodes (b) 1000 nodes

Figure 6: Comparison of model predictions with a stream with forward encoding, the nodes
receive data which is within 10% of the data predicted by the model

2.4 More than one outcast

The above analysis deals with the outcast as an individual entity whose involvement alone does
not perturb the system by a large amount. However, if a large fraction of nodes are outcast from
a network, they may have a significant impact on the system. Under certain assumptions, these
outcast nodes can be modeled using the basic SIR model itself.

If the number of nodes is O(1), then their impact on the network clearly will not be significant
as the number of nodes tend to infinity and they can be modeled independently as individual as
suggested in the previous section.

However, if the number of outcast nodes scales as O(n), then they can be modeled within the
SIR model itself. Consider the case when a fixed fraction b of nodes are outcast. For simplicity, it
is assumed that they behave in the same manner as honest nodes. It is easy to modify the model
to incorporate any changes in in behavior they might collectively have (lower fanout, biased partner
selection, etc.)

13

In this case, we will have three sets of nodes. N1 will be the nodes which communicate with
everyone. N3 will be the set of outcast nodes, and N2 will be the set of nodes which do not
communicate with any outcast nodes. Note that this requirement also can be relaxed to saying that
these nodes communicate the outcasts with a lower probability. This is not unlike modeling the
behavior of heterogeneous gossiping-based protocol [3].

In this case we will have 7 classes described in Table 2. The flow of packets and nodes is shown
in Figure 7.

Figure 7: SIR model with three classes, R1, R2, R3 are shown separately only for clarity

Set Description
I1(t) Number of nodes which are infected in N1

S1(t) Number of nodes which are susceptible in N1

I2(t) Number of nodes which are infected in N2

S2(t) Number of nodes which are susceptible in N2

I3(t) Number of nodes which are infected in N3

S3(t) Number of nodes which are susceptible in N3

R(t) Number of N nodes which have been removed

Table 2: Description of variables in the case there are O(n) outcasts

As was the case for the original SIR model, the equations can be worked out in almost the same
manner:

14

di1
dt

= i1(f s1 − 1) + i2f
s1

1− b + i3f s1 (42)

ds1
dt

= −f s1(i1 +
i2

1− b + i3) (43)

di2
dt

= i1f s2 + i2(f
s2

1− b − 1) + i3f s2 (44)

ds2
dt

= −f s2(i1 +
i2

1− b + i3) (45)

di3
dt

= i1f s3 + i3(f s3 − 1) (46)

ds3
dt

= −f s3(i1 + i3) (47)

dr

dt
= i1 + i2 + i3 (48)

However, it is not clear how one may model a system where the number of outcasts grows but
not as O(N).

2.4.1 Verification

As the model for a fraction of outcast nodes also closely fits the SIR scheme itself, it was also tested
with the same methodology and the results are shown in Figure 8.

(a) Fraction of packets reaching the outcast fraction
(10%) of nodes without FEC

(b) Fraction of packets reaching the outcast fraction
(10%) of nodes with 10% FEC

Figure 8: Fraction of packets reaching the outcast nodes when 10% nodes are outcasts

The results are given for both with and without FEC. It can be noticed again that the effect
of FEC is negligible if the fraction of packets arriving at the outcast nodes is less than 90%, and
becomes significant after the reception grows above 90%.

2.5 Model predictions for the outcast node

Since the model predictions and simulation results are fairly close, the model can be used to predict
the behavior of the system for larger number of nodes which cannot be simulated easily. As per the
modeling assumptions, we expect the model to mimic reality more closely as the number of nodes
in the system tend to infinity.

One particular feature which can be noticed in the graphs shown in Figure 5 is that the fraction
required to obtain 90% of the data varies with different values of N . From the point of view of the
model, the changing parameters are:

1. Initial conditions (s(0) = 1
N

, etc.)

15

2. Fanout: f ≈ logeN

The to see the effect of the initial conditions (number of sources) on the model, the different
states were predicted keeping the fanout parameter the same. The model predictions are shown in
Figure 9(b).

Then the number of sources was kept the same and the evolution of the system plotted for
increasing N , which resulted in the results shown in Figure 9(a). These cannot be empirically
verified owing to limits on capabilities of the simulator.

(a) Scaling of the requisite fraction with N (b) Scaling of the requisite fraction with
different number of sources

Figure 9: Fraction of nodes which need to contact the outcast to deliver 90% packets to it

2.6 Conclusions

The conclusions which can be drawn from the analysis are the following:

1. To ensure that a node receives than then 90% of the data, the fraction of nodes which need
to remove it increases with increasing N . Actually, the fraction increased with the size of the
fanout set, as shown in Figure 9(a) and in Table 3. This also indicates that the fraction of

Number of nodes in network Fanout size Required Fraction
50 4 40%

5,000 9 74%
500,000 14 82%

500,000,000 21 89%

Table 3: Fraction of nodes which needs to stop communicating with the outcast to get 90%
of the data, as shown in Figure 9(a)

nodes which need to communicate with a newcomer for the newcomer to receive 90% of the
data grows less as the size of the fanout set increases.

2. The other observation which can be made from Figure 4(a) is that a large fraction of nodes
can be reached on average using a relatively small fanout, irrespective of the number of nodes
in the network. A fanout of 2 would reach about 80% of the nodes and a fanout of 3 would
reach more than 90% of the nodes in the network. Hence, a revoke message sent with a fanout
size of 3 would be enough in a network of 500,000,000 nodes to ensure that more than 89% of
the nodes revoke the blacklisted node on average.

3. The model has been verified and can be used for other investigations.

Hence, the model described answers conclusively the original questions and opens doors for
further interesting investigations. Some possibilities are suggested in Section 4.

16

3 Implementing score management for LiFTinG

The second part of the project dealt with the problem of designing a protocol to solve the score
management problem which can be implemented efficiently and could be scaled to a large number
of nodes without overburdening any particular node. The problem of maintaining a score is a two
pronged problem:

• Each node should be able to report the score it calculates for other nodes in the system.

• For each blamed node, its scores should be accumulated and the node should be blacklisted if
its score falls below a certain threshold.

This section details some of the implementations which can solve this problem of score manage-
ment, starting with the simplest solution to implement in Section 3.1 to the current state of art
protocols in Section 3.2. Section 3.3 takes a step back and analyzes the desirable properties for such
a protocol and describes a simple solution and its problems. In Section 3.4, a compromise between
the different protocols is described which takes us one step closer to an ideal solution to the problem.
Finally, some conclusions are discussed in Section 3.5.

3.1 Central blaming entity

This is the simplest score management to implement. One particular node manages all other nodes
in the system as shown in Figure 10. All the nodes know about C and report the calculated scores
for other nodes to this node. The central server C, in turn, keeps track of all the scores for all the
nodes and sends out the revoke message as soon as the scores fall below a certain threshold for each
node it manages.

Figure 10: Central server managing all nodes in the system

The drawback of the system is evident from the figure itself, that it is clearly not scalable. As
the number of nodes increase, the memory overhead on the server will increase linearly as O(N).
Also, after a round of gossip, each node will send the score values for f ≈ O(logeN) back to this
server. Hence, the bandwidth used per gossip round at the server increases as O(N logeN). This is
clearly unacceptable.

3.2 AVMON

An alternative is to let the nodes be manager by a fixed set (of size m) of other nodes. This can
be done if the manager/managee relationship is a function of the hash values of the IDs of the
nodes themselves. This approach is shown in Figure 11 where the relationship is hash(manager) <
hash(managee) ≤ hash(manager) + 2, hence m = 2.3

This approach had clearly certain advantages to offer over having a central server, the first being
scalability itself. Each node has to manage approximately m nodes to ensure that each node has
exactly m managers. Note that this is guaranteed only with a high probability in a population
of finite number of nodes and non-ideal hash function. This is the approach used for availability
monitoring in AVMON [9]. The protocol to solve the two problems is the following:

1. Reporting the scores: Each reporter requests the blamed node for a list of its managers and
upon receiving the list, sends a unicast message to each manager.

3In practice, owing to non uniformity of hash functions and finite number of nodes, the number of managers is usually
not the same for all nodes in the system.

17

Figure 11: Hash based manager selection, each node gets two managers and has two man-
agers

2. Accumulating scores and blacklisting: Each manager accumulates score for its managee
nodes and initiates a revoke message to be multicast as soon as the score value falls below a
certain threshold .

However, as is evident in Figure 11, having such a manager/managee relationship introduces a
structure in the graph, which is not desirable for a gossip-based protocols.

3.3 Properties of an ideal score management protocol

In an ideal case, we would want to have a score management system which scales well with the size
of the system and which does not introduce a structure in the graph. Additionally, simplicity in
implementing the protocol is another desirable property of such a system. Nevertheless, scalability
being the primary requirement, any central server solutions can be ruled out at this stage though
they are the simplest to implement.

A possible way of implementing the score management system would be to have independent
nodes in the system whose only task is to maintain the scores. However, this approach would require
the monitoring nodes to be aware of the joining and leaving nodes and the number of these nodes
will need to increase as O(n) too. Hence, it is desirable that we can let the nodes themselves be
the score managers of other nodes in the network. This introduces functional uniformity among the
nodes and would make deployment of LiFTinG protocol considerably easier.

For such a system, for each node x, we will have two sets, namely:

• PS(x): The Ping set of node x, or the managers of x, and,

• TS(x): The Target set of node x, or the nodes x is a manager of, or the managees of x.

However, allowing nodes to manage scores for each other introduces the problem of having col-
luding nodes in the system. Such a protocol must have the property that if there are a fraction of
colluding nodes in the system, then they do not do allow score forging (at least with high probability,
the protocol should prevent this from happening).

The authors in [9] have investigated what properties such a monitoring system must have. These
are:

1. Consistency: y ∈ PS(x) must not change with changes in the system size (with churn).

2. Verifiability: Given three nodes (x, y, z), z should be able to verify whether y ∈ PS(x).

3. Randomness: For all nodes x, PS(x) must contain independent and identically (uniformly)
distributed nodes.

4. Discoverability: Node x should be able to discover TS(x) and PS(x) quickly.

5. Load balancing & Scalability: The overhead for discovering PS(x) and TS(x) should be
distributed evenly on the entire network and these overheads must be scalable.

AVMON has all these properties and runs as a separate protocol independent of gossiping.
However, there are certain properties which are not required for score management in LiFTinG.
The score management system for LiFTinG should ideally utilize the following properties:

• Knowledge of PS(x) is not a necessity for a node x (This may be useful, or harmful)

• Nodes only provide negative feedback for other nodes. Also, there will never be any false
negative feedback sent in a rational system [6].

Keeping these in mind, a protocol was designed which did not depended on any relationship
between the node IDs.

18

3.3.1 Completely unstructured managers

The suggested solution is allowing nodes to choose their managers uniformly at random on the whole
set, as illustrated in Figure 12.

Figure 12: Each node choses two managers uniformly at random, Node 1 does not have
any manager, Node 6 has 6 managers

This introduces another issue of ensuring with a high probability that all the nodes are cov-
ered by (say) m managers. This can be ensured by increasing the number of managers each node
chooses. Preliminary analysis suggests the conjecture that each node will only need to manage about
O(logeN+f(m)) nodes to ensure that all nodes have at least m managers. For the detailed empirical
analysis, see the attached Appendix.

If we assume that the conjecture stated above holds, then a fairly simple solution to the problem
of score management emerges. The managers are alloted by each node randomly selecting (logeN +
m + O(1)) nodes it wished to manage, thus ensuring with high probability that each node has m
managers. This information is kept private by each node, so nodes do not know the managers of
each other.

When reporters have to send scores for blamed nodes, they gossip the blame values throughout
the network. When a node receives such a blame message for a node which it is managing, it
accumulates that score. It was observed in Section 2.2.1 that with a fanout of about 3, close to 95%
of the nodes can be reached on average. Hence, it should be possible with a small fanout to reach
most of the managers. This solution was implemented to check for the bandwidth overhead incurred
by the nodes.

It was observed that with increasing N , the overhead of these gossiped messages increased. In
part, this behavior can be explained by seeing that overhead of n nodes gossiping blame messages
once per p rounds is equivalent to one single source which gossips n

p
messages per gossip round.

Hence, if the blame gossiping period p is O(1) (or that it remains constant), then the overhead of
blame messages would scale almost as O(N). Also, increasing the gossip period would result in:

• Fewer score reports as the system size increases. This would have an adverse affect on the
speed with which freeriders are caught in a network with a large number of nodes.

• Still larger message sizes because the blame values would accumulate for more nodes in the
blame gossiping period.

These artifacts are clearly undesirable and prevent the protocol from scaling to a large number of
nodes.

3.4 Alternate solution: Caching addresses

The problem of overhead in the previous solution was caused because of gossiping the blame messages
throughout the network. This problem can be solved if we limit the hop counts of the gossiped
message while ensuring reliable delivery of the message. One possible solution with this observation
in mind is presented here.

For this protocol, each node first chooses k other nodes, whose managers it will remember. Then
nodes select the managee nodes, as in the previous case, and broadcast this information to other
nodes (via gossiping). Assume that on average, each node has m managers. This way, each node
populates its table of managers for the k nodes it had initially selected as shown in Table 4.

Note that this is during the initialization of the system itself, and, hence, this overhead is only
incurred once. How to deal with nodes dynamically joining and leaving the system would be discusses
later.

19

(a) Address table for Node 3

Managers of: Manager list
1 -
4 {1}
8 {4, 7}

(b) Address table for Node 4

Managers of: Manager list
2 {1,3}
8 {4, 7}
6 {2, 3, 4, 5, 7, 8}

Table 4: Sample address tables after population for the network shown in Figure 12,
Nodes choose k ≈

√
(8) ≈ 3 random nodes whose managers they remember

Whenever a reporter needs to communicate scores for a node x, it first checks if the address of
the managers of x is present in the k entries in its own address table. If yes, then the it sends a
unicast message to each of the managers of x. If not, the score is sent to l other nodes in the system.
Upon reception of such a relayed message, a node looks through its own list of k addresses and sends
a unicast message to the managers of x if the entry is found. Otherwise, the relayed message is
discarded. This prevents wasteful gossiping of messages while still remaining resistant to colluding
nodes.

Let π denote the probability of a blame message reaching the managers of x. A message will not
reach the managers of x if none of the l nodes have the address of managers of x in their address
book.

π = 1−
(

1− k

N

)l

(49)

≈ 1− e−
l·k
n (50)

If we choose l ·k = c ·n, π can be made close to the order of probability of successful transmission
of a packet on the network.

In this case, we have:

B/W overhead : =

Own + Relayed blames to unicast︷ ︸︸ ︷
k

N
·
(
f +

(
1− k

N

)
· f · l

)
+

(
1− k

N

)
· l︸ ︷︷ ︸

Own blames to relay

(51)

= f ·
(
l +

k

N
− l · k

N
· k
)

(52)

Also, in this case, the memory overhead per node is O(m · k), as address of m managers of k
nodes is kept in memory by each node.

If we choose l ≈ c ·
√
N and k ≈

√
N , then the bandwidth overhead is O(f ·

√
N) = O(

√
N logeN)

and the memory overhead is O(c ·
√
N · logeN).

3.4.1 Nodes joining and leaving the network

After the manager/managee relationship has been set up, nodes will need to regularly check their
managee nodes regularly to purge the system of dying nodes. Also, newcomers will need to populate
their addresses books of O(

√
N) other nodes and need to get m managers for themselves.

The JOIN algorithm, which takes care of these requirements, involves the following steps:

1. The joining node x will inform the Bootstrap node in the system about its joining.

2. The Bootstrap node selects m managers for node x and informs them of x’s presence. The m
managers add entry x in their score tables and multicast the message IMAN(x)4.

3. The Bootstrap node asks t nodes in the system to share their address book with node x. There
is a possibility of an attack at this point, which is that a colluding node will try to populate
the manager address book by sending a false list of managers of their own and colluding nodes.

4IMAN is an abbreviation of I MANage

20

Some analysis would be needed here to determine how collusion resistant can the system be
made without having a large t, but it is expected that the probability of such a contamination
would remain low for even a reasonable number of colluding nodes.

4. The node x shuffles the t·c·
√
N entries it receives and fills its address books with c·

√
N random

entries (along their managers) and chooses m nodes in the network to manage. x declares its
managee nodes using a IMAN(node1, node2, · · · , nodem) nodes.

5. The nodes which have nodei in their address book can update the list of managers for it.

6. Each node in the network which receives the IMAN message (either from a manager of x or
from x itself), adds x with probability c√

N
into their address cache and add all the managers

of x into the table, as they receive the messages from the other managers. Note that this check
is done only once by each node in the network for a joining node. This ensures that x (and its
managers) gets mentioned in expected c ·

√
N address books.

To detect whether a node x is still present in the network or has gone offline, the managers can
rely on the blame messages they are receiving. If blame messages for x are being propagated in the
network, then x is clearly active and online. If, however, such a message is not received for a time T1,
the managers can ping the node to check its availability. If the node fails to respond for a set number
P of pings, it is considered dead. The manager then requests other nodes in the network randomly
(O(
√
N) nodes in the average case) to get a list of managers of x and contacts them using unicast

messages to get to arrive at a consensus whether x is dead or not. If so, a multicast REMOV E(x)
message is sent to the network which directs all nodes which contained an entry for x in their address
books to purge this entry.

3.4.2 Comparison with AVMON and AVCast

The two protocols, apart from the described protocol compared here are AVMON and AVCast [10].
Both the protocols use hash function to establish manager/managee relationships. To compare the
cost of different protocols, we need a concrete definition of costs. For simplicity, costs (with slightly
different definitions) in four different scenarios are considered:

1. Cost of Joining/leaving a system: In the described protocol, a JOIN message causes
m + 1 ≈ O(logeN) multicast messages, and t messages unicast to the joining node of size
c
√
N · logeN each. In AVCast, 1 multicast message (REQ) is sent. For AVMON, the JOIN

message is propagated only O(4
√
N) times in the network. The side-effect of this gain with

respect to JOIN message overhead is the time it takes for a node to be discovered by its manager.
While for the described protocol and AVCast, the discovery time is only O(loge N

loge loge N
)[1], for

AVMON, it takes O(
√
N) time.

2. Periodic Costs: These are the costs for maintaining the system, needed primarily in AVMON.
Periodically, in AVMON, nodes exchange their coarse view of the network, which is of size
O(4
√
N), and recompute of hash values of O(

√
N) pairs of nodes. The described protocol,

however, does not require any periodic updating, while the dependence on periodic updates
can be made arbitrarily small in AVCast 5.

3. Persistent Memory Requirements: The AVCast protocol in the implementation described
in [10] requires O(N) memory. AVMON requires a memory overhead of O(4

√
N) and the

described protocol, of O(logeN ·
√
N).

4. Per-gossip round overhead: For sending each blame message, the designed protocol would
have an overhead of O(

√
N · logeN). For AVMON and AVCast, however, this overhead is

surprisingly low, only O(f ·m) ≈ O
(
(logeN)2

)
.

Hence, giving up a verifiable relationship between managers and managee nodes results in higher
memory as well as bandwidth costs (and lower computation costs). Between AVMON and AVCast,
we see that in case of AVCast, the overhead is slightly higher if many nodes join the network, but
there are no high periodic costs, while opposite is the case for AVMON. It suggests that in conditions
with very high churn, AVMON might perform better than AVCast.

5at cost of having slightly disproportionate manager/managee relationship

21

3.5 Conclusions

In this section, the design issues related to a score management system for LiFTinG protocol are
looked at. It is seen that the simplest implementation (the central blaming entity) does not scale,
while the implementations which does scale introduces a certain structure in the manager/managee
relationships, which is undesirable. The middle ground between these two extremes is explored
first by keeping managers unknown and gossiping the blame messages to the entire network. This
approach was shown to fail on the scalability side. Then a new address caching approach is described
and shown to be somewhere between the two approaches. Between AVMON and AVCast too, there
exists a trade-off.

Various properties desired in such a protocol were discussed and some basis of comparing the
approaches too were shown. Overall, the choice of the protocol to deploy is a complicated question,
which can be best answered by the chart shown in Figure 13. Scalability refers to the overhead(s) and
load balancing of the protocol. Structure refers to how random is the manager/managee relationship.
Simplicity is the ease with which the particular algorithms can be implemented (in opinion of the
author).

Figure 13: Comparison of various score management schemes discussed in Section 3.4.2 on
a scale of 1 to 5, higher score means better on all axes

22

4 Conclusion & Future work

The first part of the project looked at the problem of interaction between an individual node and a
gossiping network with hopes of obtaining an answer to the question how many nodes should stop
communicating with the individual to keep the individual from obtaining x% of the data. A model
was constructed for the analysis, verified using simulations for practical number of nodes, and then
used to predict what the answer would be as N increases.

It was found that this fraction of node increases as the fanout increases in a non-linear fashion
(see Figure 9(a)). However, if we turn our perspective around, we see that a node joining the system,
to get about 90% of the data, would need to contact a fraction of the total network which keeps
on decreasing with number of nodes in the system. While in a system of N = 50 nodes, it would
need to contact 60% nodes, (or 30 nodes), in a system of N = 500, 000, 000 nodes, it would need to
contact 11% of nodes, (or 55,000,000 nodes). This is with the size of the fanout set exactly dlogeNe.
If the nodes communicate with a greater fanout, this fraction can be brought down further, without
stressing the network much. This investigation is out of scope of this project, but is an interesting
direction to work on.

Further, the model which was developed and verified is fairly general and it can be used for
many other investigations too. For instance, the model is general enough to predict the behavior
of a heterogeneous gossiping-based protocol [3], where the nodes can be divided into segments with
different f parameters. Though the temporal evolution as predicted but the model (see Figure 4(b))
has not been verified, it may give insights into the performance of the protocol in terms of jitter too.

The second part of the project looked into the problem of designing an efficient and simple score
management protocol. Various faces of the problems were explored and some observations made as to
which may be the possible places with some scope of improvement in the present AVMON system,
which is too strong for our purposes. Also, possible sources of inefficiencies one might encounter
while designing such a protocol were also explored and an improved design proposed. However,
the analysis revealed that there are numerous hidden parameters which have a role to play in the
eventual efficiency of the system. Hence, as a future exploration, a formal description of the quality
of the ideal protocol could be looked into. This would help in making the pros and cons of different
existing protocols clear and would perhaps answer the open question of whether a better protocol
than AVMON can be used to solve the score management problem in LiFTinG.

5 Acknowledgments

Being a novice in the area of research, this project would not have been possible without constant
supervision of Maxime Monod and Prof. Rachid Guerraoui. Prof. Jean-Yves Le Boudec provided
much needed guidance on developing the epidemic based model for gossiping and the modeling
of outcasts. Prof. Patrick Thiran helped in formulating the m-coverage problem and subsequent
empirical results. Maxime helped me gain familiarity with the simulator for verifying the models
and gave valuable feedback on the report. Also, I thank Rohit Nagpal for intriguing insights and
help with the analysis of the models.

23

Appendix A: Simulation methodology

The simulations for verification of the models were done on the YALP6 simulator.
The simulations are expensive in terms of CPU, memory, and time taken. Hence, instead of

verifying the model for temporal evolution, only the final state of the systems for different parameters
was found and was compared to the predictions made by the model.

Verifying the SIR model

To verify the SIR model, the only operative parameter is the fanout or f , and the initial number
of sources. The number of sources is not of much interest to us and is assumed to be 1 for all cases
in the experiments. Hence, we would verify the system by verifying whether the fraction of nodes
reached using a given fanout is the same as what is predicted by the SIR model.

Hence, the ideal way to verify the model would be to run the simulator n times independently
for 1 packet each and then observe the fraction of nodes reached by each packet. However, for this
verification, the simulation was run for 1000 packets and for 1000 nodes with the fanout ranging
from 0 to logeN + 2. Then the fraction of packets reaching the nodes was calculated and averaged
over the number of packets and nodes.

To see how the results of the two different methodologies are related, consider the variables
defined in Table 5.

Variable Quantity denoted
r∞i Fraction of nodes reached by ith packet, ri(∞)
1ij Indicator function which is 1 if ith packet reached the jth node
nj Number of packets received by jth node.

Table 5: Variables used to analyze simulation results

The quantity we are interested in is ŝ or r̂ = 1− ŝ for different f , where r̂ is given by:

r̂ =

∑
i∈Pckt r

∞
i

pckts
=

∑
i∈Pckts

∑
j∈Nodes 1ij

pckts ·N =

∑
j∈Nodes nj

pckts ·N
The last is the quantity we measure. Ten repeated runs were performed to get an estimate of

the variance, and 97% confidence intervals using the 2nd and the 9th value. This analysis suffices
as the variance was found to be negligible, as seen in Figure 4(a). A similar analysis was done for
analyzing the model for a fraction of outcast nodes.

Verifying the Outcast modeling

To verify this model, the same simulator was used with the bootstrapping node informing a fraction
a of nodes not to contact a given node (or a certain number of nodes). The parameter f was set
to dloge ne. The simulation is then run for the said number of packets and the relevant quantities
measured.

To get the probability of infection, the number of packets arriving at the outcast node were
divided by the total number of packets gossiped in the network.

6http://yalps.gforge.inria.fr/

24

Appendix B: The m− coverage problem

This section deals with the problem of ensuring that upon performing a random selection of managee
nodes, the situation shown in Figure 12 with respect to Node 1 does not happen, that is, all nodes are
covered my at least m managers with a high probability. This is framed as a directed random graph
problem and analyzed. Thereafter some simulations results are shown and conjectures presented
as to what might be the possible solutions. The conclusion is that the number of nodes each node
should manage to ensure m managers for each node is conjectured to be O(loge n + f(m)) where
f(m) is o(m).

Problem Statement

Consider a completely connected graph G with n nodes. Each node chooses k other nodes uniformly
at random and draws a directed edge towards them, thus, resulting in a regular graph of out-degree
k. On this graph, we have to find k such that w.h.p7, each node has an in-degree of exactly m. This
is referred to as m-coverage in the rest of the report.

This corresponds to each node in the network having at least m managers, if the directed arrow
between two nodes corresponds to the node at the tail managing the node at the head.

Part of solution

The following simplifications are done to arrive at a different (already solved) problem:

1. The graph is assumed to be G(n, pn) with pn = k
n

. This relaxes the requirement of regularity,
or of having exactly k neighbors, to having k neighbors in the average case.

2. The requirement of coverage is replaced with a more stringent requirement of connectivity,
noticing that if a network is completely connected, then each node is also covered (except one
node, the source)

3. The requirement of having an in-degree of at least m is relaxed to having only at least 1
in-degree.

4. Instead of requiring the probability to be 1 − o(1), we require it to be 1 − O(1), with the
constant being a design parameter.

In this case, the solution is provided in [8]. Which gives us the following result:

If k = loge n+ c+ o(1), then probability of graph being completely connected (covered) is e−e−c

.

Sketch of the proof

The proof for coverage (on the same lines as proof for connectivity as discussed in [8], but sparing
the technical details) is sketched below:

Denote by πn(m) as the probability that in a graph with n nodes, m nodes are covered (have an
in-degree of at least 1). Then, we have:

πn(n) = 1−
i=n∑
i=1

i nodes uncovered︷︸︸︷
nCi · πn(n− i, k)︸ ︷︷ ︸

Prob. rest covered

·

No edge to the i nodes︷ ︸︸ ︷
(1− pn)ni

Now if it is assumed that:

1. The sum and limit are interchangeable

2. πn(n) converges to a value π.

then it follows that:

lim
n→∞

nCi(1− pn)ni =
ni · e−ki

i!

If k is o(n). Now, if we let k = loge n+ c+ o(1), we get:

7Defined as probability of event not happening ≈ o(1)

25

lim
n→∞

nCi(1− pn)ni =
e−ci

i!

Hence, we get the following equation:

π = 1−
i=n∑
i=0

e−ci

i!
· π

On rearrangement, this yields:

π = e−e−c

Hence, proved.

Possible approaches

The easiest would be to find a previous work which deals with a similar problem. However, the
following approaches might work too:

1. Somehow modifying the regular pairing graph used to approximate regular graphs to deal with
directed edges.

2. Figuring out what is the exact probability of i vertexes having less than m in-degree, when
the rest of the graph is m-covered, and then using the same recurrence as used for the relaxed
case.

Exploration using simulations

Simulations were performed to check whether k and m followed any easy to see relationships. The
results are presented in Table 6.

N m=1 m=2 m=3 m=5 m=10 m=25
100 10 13 14 16 26 56
373 10 14 16 18 27 56

1,390 12 15 17 20 31 57
5,180 12 15 17 23 33 57
19,307 15 17 20 25 33 57
71,969 16 18 22 25 37 60
268,270 17 20 23 27 37 61

1,000,000 18 22 25 29 40 64

Table 6: Simulation results, 50 repeated runs, probability of coverage > 0.92 with 95%
confidence

The evolution of the required k with n can be seen in Figure 14.

Is k = m · (loge n+ c)?

If so, k
m
− loge n = c, or the lines for different m in Figure 15 would be constant lines.

It can, hence, be concluded that k grows much slower than m · (loge n+ c).

Is k = m loge n+ c?

If so, then k −m loge n = c, or the lines for different m in Figure 16 would be constant lines.
It can, hence, be concluded that k’s dependence on loge n is at least sub-linear in m.

26

Figure 14: k v/s n for different m coverage

Figure 15: Is k = m · (loge n+ c)?

Figure 16: Is k = m loge n+ c?

Is k = loge n+m · c?

If so, k−loge n

m
= c, or the lines for different m in Figure 17 would be constant lines.

This looks the most promising graph as the lines for high m tend to be constant. However,
the decrease in the c with increasing m suggests that the constant c is a function of m and not n.
The simulations suggest that k = loge n+ f(m) is a prospective solution of the problem. However,
dependence on loge loge n or other slowly growing functions, cannot be ruled out.

27

Figure 17: Is k = loge n+m · c?

References

[1] B. Bollobas. Random Graphs. Cambridge University Press, 2001.

[2] P. T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and L. Massoulié. From epidemics
to distributed computing. IEEE Computer, 37:60–67, 2004.

[3] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Boris Koldehofe, Martin Mogensen,
Maxime Monod, and Vivien Quéma. Heterogeneous Gossip. In Proceedings of the 10th
ACM/IFIP/USENIX International Middleware Conference (Middleware), 2009.

[4] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry, 81(25):2340–2361, December 1977.

[5] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod, and Swagatika
Prusty. Lifting: Lightweight freerider-tracking protocol in gossip. 2010.

[6] G. Hardin. The tragedy of the commons. Science, 20:1243–47, 1968.

[7] Arie Kaufman. A micro-macro simulation model for a signalized network. In Proceedings of the
13th annual symposium on Simulation (ANSS), 1980.

[8] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Probabilistic reliable
dissemination in large-scale systems. IEEE Transactions on Parallel and Distributed Systems,
14:248–258, 2001.

[9] Ramsés Morales and Indranil Gupta. Avmon: Optimal and scalable discovery of consistent
availability monitoring overlays for distributed systems. In Proceedings of the 27th International
Conference on Distributed Computing Systems (ICDCS), 2007.

[10] Thadpong Pongthawornkamol and Indranil Gupta. Avcast : New approaches for implementing
availability-dependent reliability for multicast receivers. IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), 2006.

[11] Hamidou Tembine, Jean-Yves Le Boudec, Rachid El-Azouzi, and Eitan Altman. Mean Field
Asymptotic of Markov Decision Evolutionary Games and Teams. In Gamenets, 2009. Invited
Paper.

28

	Introduction
	Outcasts
	Score management

	Outcasting nodes
	Models for gossiping
	The basic epidemic model
	Verification

	Modeling outcasts using mean field theory
	Verification

	More than one outcast
	Verification

	Model predictions for the outcast node
	Conclusions

	Implementing score management for LiFTinG
	Central blaming entity
	AVMON
	Properties of an ideal score management protocol
	Completely unstructured managers

	Alternate solution: Caching addresses
	Nodes joining and leaving the network
	Comparison with AVMON and AVCast

	Conclusions

	Conclusion & Future work
	Acknowledgments
	Appendix
	References

