
Nuts and bolts of Matlab

Akashdeep Kamra & Utkarsh Upadhyay
Indian Institute of Technology, Kanpur

May 21, 2009

1 Differential Equations

Consider the following equations from the ode45 help section:

y′1 = y2 y3 (1)
y′2 = −y1 y3 (2)
y′3 = −0.51 y1 y2 (3)
≡ Ẏ = f(t, Y) (4)

with the initial conditions:

y1(0) = 0 (5)
y2(0) = 1 (6)
y3(0) = 1 (7)

They are solved in the following way:

function dy = f(t,y) % The derivative function.
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

end

and on the prompt:

>> [T,Y] = ode45(@rigid,[0 12],[0 1 1]);
>> plot(T,Y(:,1),’-’,T,Y(:,2),’-.’,T,Y(:,3),’.’);

1.1 Question 1

Solve and plot the solution of the following problem, which is a Aging Spring problem:
To see the solution in Mathematica, visit http://demonstrations.wolfram.com/TheAgingSpring/

1

mx′′ + cx′ + k(t)x = a cos(2πft) (8)
k(t) = k1 + (k0 − k1)e−εt (9)

Optional: Can you explain physically what is it that the equation says? Can you suggest a few initial
values of the constants which will yield familiar solutions?

Solve the equation for the following values:

m = 3.4, c = 2.5, a = 13, f = 0.6, k0 = 0.75, k1 = 4.5

and plot the position (x), with respect to t ∈ [0, 11] and with the initial conditions x(0) = 1, x′(0) =
−9 to see how complicated the solution can actually get.

Hint: Remember that any higher order equation can always be expressed in a matrix form (equation
4) which involves only one differentiation in each row.

1.2 Question 2

However, for some problems, ode45 is not enough (called stiff problems1). Again, from the example
problem set, try ode45 on the follwing problem for the time period t ∈ [0, 3000] (Van der Pol equations):

y′1 = y2 (10)
y′2 = 1000(1− y2

1)y2 − y1 (11)

Initial condition:

y1(0) = 2 (12)
y2(0) = 0 (13)

Also try ode15s on the problem.

1There are regions in the domain of t where the rate of change is very low

2

2 Symbolic calculations

Requires the Symbolic Calculation Toolbox

>> syms x a b c
>> y = a*x^2 + b*x + c

y =

a*x^2+b*x+c

>> subs(y,1)

ans =

a+b+c

>> solve(y)

ans =

-1/2*(b-(b^2-4*a*c)^(1/2))/a
-1/2*(b+(b^2-4*a*c)^(1/2))/a

>> z = subs(y,x,2)

z =

4*a+2*b+c

>> subs(z,a,1)

ans =

4+2*b+c

>> diff(y)

ans =

2*a*x+b

>> int(y)

ans =

1/3*a*x^3+1/2*b*x^2+c*x

3

2.1 Question 3

Find the symbolic solutions for:

1. The inverse of a 2D matrix

2. The equations [a b; c d]× [p; q] + [e; f] = 0 for p and q.

3. The solution of a cubic and a bi-quadratic equation in its most general form.

4. The solution of aex + bx = c

4

3 Really plotting functions

Try the following:

>> z = x^2 + 2*x + 3

z =

x^2+2*x+3

>> ezplot(z,[-5 5]);
>> ezplot(@(x) sin(x)*x);
>> ezplot(@sin, @cos);

Explore the ez family of plotting functions and using them, do the following:

• Plot y = 2ex − 4x+ 1 for x ∈ [−10, 10]

• Plot z = sinθ on the unit circle, i.e. x2 + y2 = 1.

5

4 Profiler

Find and start the profiler. Then get hold of the file zero hold slow.m and take a look at it. (It can be
found at home.iitk.ac.in/ utkarshu/zero hold slow.m).

Create the test matrix:

>> z = zeros(100000,1);
>> z(1:5:100000) = 1:5:100000;

4.1 Question 4

The objective here is minimizing the running time of the zero hold slow function while making minimum
changes to the source code. We will be extending the function to become a first order hold too later.

4.1.1 Question 4.1

Run the profiler on the program to find the most expensive function.

4.1.2 Question 4.2

Make minimal changes to the function while keeping the function extension in mind, and compare
timings.

4.1.3 Question 4.3

Make changes to the program to make the hold a first order one, i.e., join the two points by a line
segment instead of just repeating the first value.

Hint: Use linspace

6

5 Curve fitting

You have already seen how to use polyval to evaluate polynomials. We will describe another way of
doing the same.

>> z = poly(1)

z =

1 -1

>> poly2sym(z)

ans =

x-1

>> y = 2*x^2 + 3*x + 5;
>> sym2poly(y)

ans =

2 3 5

Also, finally there is the small task of fitting points to curves.

5.1 Question 5

Plot the function y = mx+ c. Using ezplot for m = −2.5 and c = 1.

5.2 Question 6

Make a program (script) which allows user to input points he wants, the desired degree of a polynomial
and then finds the polynomial that best fits the points and then plot the points as well as the estimated
function.

Hints:

• Take a look at: polyfit

• For ease of input, consider: ginput

• Recall: input function and its case-sensitivity

• Try both ezplot as well as polyval and plot and notice the differences.

7

	Differential Equations
	Question 1
	Question 2

	Symbolic calculations
	Question 3

	Really plotting functions
	Profiler
	Question 4
	Question 4.1
	Question 4.2
	Question 4.3

	Curve fitting
	Question 5
	Question 6

